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Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and reusable
enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors,
end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG'’s specifica-
tions implement the Model Driven Architecture@® (MDA(®)), maximizing ROI through a full-lifecycle approach to enterprise
integration that covers multiple operating systems, programming languages, middleware and networking infrastructures,
and software development environments. OMG’s specifications include: UML®) (Unified Modeling Language™); CORBA®)
(Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and industry-specific standards
for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are
available from the OMG website at:
http://www.omg.org/spec
Specifications are organized by the following categories:
e Business Modeling Specifications
e Middleware Specifications
— CORBA/IIOP
— Data Distribution Services
— Specialized CORBA
e IDL/Language Mapping Specifications
e Modeling and Metadata Specifications
— UML, MOF, CWM, XMI
— UML Profile
e Modernization Specifications
e Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
— CORBAServices
— CORBAFacilities
e OMG Domain Specifications
e CORBA Embedded Intelligence Specifications
e CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may
be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.orgh
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Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt.: Exceptions

NOTE: Italic text represents names defined in the specification or the name of a document, specification, or other publica-
tion.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.
org/report_issue.htm.
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0. Submission-Specific Material

0.1. Submission Preface

Fraunhofer FOKUS, MITRE, and Thematix Partners LLC are pleased to submit this joint proposal in response to the
Ontology, Modeling and Specification Integration and Interoperability (OntoIOp) RFP (OMG document ad/2013-12-02).
The joint proposal is supported by Athan Services and the Otto-von-Guericke University Magdeburg. The contacts for this

submission are:

e Fraunhofer FOKUS, Andreas Hoffmann, andreas.hoffmann@fokus.fraunhofer.de
e MITRE, Leo Obrst, lobrst@mitre.org

Thematix Partners LLC, Elisa Kendall, ekendall@thematix.com

e Athan Services, Tara Athan, taraathan@gmail.com

0.2.

Mandatory Requirements

Otto-von-Guericke University Magdeburg, Till Mossakowski, till@iws.cs.uni-magdeburg.de (lead contact)

ID

RFP requirement

How this proposal addresses requirement

6.5.1(a)

Proposals shall provide a specification of a metalan-
guage for relationships between the components of
logically heterogeneous OMS, particularly, given a
language translation from a language L1 to another
language L2, the application of the language trans-
lation to an OMS that is written in the language
L1.

DOL provides the required translation construct us-
ing syntax O with translation t, see and
[0-4:2] Moreover, DOL provides heterogeneous inter-
pretations between OMS, see @ and @

6.5.1(b)

Proposals shall provide a specification of a meta-
language for the union of OMS written in different
languages, which implicitly involves the application
of suitable default translations in order to reach a
common target language.

The syntax for unions is 01 and 02, see [9.4] and
[0:22] Default translations are discussed in [0.4] and
DOL’s notion of heterogeneous logical environment
explicitly specifies default translations, see [I0.2}

6.5.1(c)

Proposals shall provide a specification of a metalan-
guage for importation in modular OMS.

DOL allows the import of OMS by their IRI, see|9.4]
and

6.5.1(d)

Proposals shall provide a specification of a meta-
language for relationships between OMS and their
extracted modules e.g. the whole theory is a conser-
vative extension of the module.

DOL provides such a construct with syntax module

m : ol of o2 for sigq, see@and@

6.5.1(e)

Proposals shall provide a specification of a metalan-
guage for relationships between OMS and their ap-
proximation in less expressive languages such that
the approximation is logically implied by the orig-
inal theory, where the approximation generally has
to be maximal in some suitable sense.

DOL provides such a construct with syntax o keep

logic, see @ and @

6.5.1(f)

Proposals shall provide a specification of a metalan-
guage for links such as imports, interpretations, re-
finements, and alignments between OMS/modules.

DOL covers several metalogical relationships,
namely entailments, interpretations, equivalences,
refinements, alignments and module relations, see

pHand p57

6.5.1(g)

Proposals shall provide a specification of a metalan-
guage for combination of OMS along links.

DOL provides such a construct with syntax combine
n, where n is a network of OMS and mappings

(links), see[9.4]and [9.4.2]

6.5.2(a)

The constructs of the metalanguage shall be appli-
cable to different logics.

The semantics of DOL is based on a heterogeneous
logical environment, which can contain arbitrary log-

ics, see [10.2]

Continued on

next page
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Table 0.1 — Continued from previous page

ID

RFP requirement

How this proposal addresses requirement

6.5.2(b)

The metalanguage shall neither be restricted to
OMS in a specific domain, nor to OMS represented
in a specific logical language.

The semantics of DOL is based on a heterogeneous
logical environment, which can contain arbitrary log-

ics, see[T0.2}

6.5.2(c)

The metalanguage shall not replace the object lan-
guage constructs of the conforming logical lan-
guages.

The syntax of a NativeDocument is left unspecified
in this standard. Rather, here this standard relies on
other standards and language definitions. See [0.4]

and Q.Z.Ql

6.5.2(d)

The metalanguage shall provide syntactic constructs
for (i) structuring OMS regardless of the logic in
which their sentences are formalized and (ii) basic
and structured OMS and facilities to identify them
in a globally unique way.

The structuring constructs for OMS in[9.4]and[9.4.2
can be used for any logic, see the semantics in [10.2
DOL uses IRIs for referencing both basic and struc-

tured OMS, see @

6.5.3(a)

An abstract syntax specified as an SMOF compliant
meta model.

The abstract syntax is specified using SMOF, see
clause |§|. An EBNF variant is given in annex m

6.5.3(b)

A human-readable lexical concrete syntax in EBNF
and serialization in XML, for the latter XMI shall
be used.

The concrete syntax (in EBNF) is specified in clause
[ The XMI representation is automatically derived
from the SMOF meta model.

6.5.3(c)

Complete round-trip mappings from the human-
readable concrete syntax to the abstract syntax and
vice versa.

The metaclasses of the MOF abstract syntax are
used as non-terminals of the EBNF concrete syn-
tax (clause E[); this makes a round-trip mapping be-
tween both straight-forward. Moreover, the round-
trip mapping has been implemented in form of a
parser and a printer as part of the heterogeneous
tool set (see appendixlm and http://hets.eu).

6.5.3(d)

A formal semantics for the abstract syntax.

The formal semantics is given in clause Iﬁl

6.5.4(a)

Existing OMS in existing serializations shall vali-
date as OMS in the metalanguage with a minimum
amount of syntactic adaptation.

Any document providing an OMS in a serialization
of a DOL conforming language can be used as-is in
DOL, by reference to its IRI. See [9.8]

6.5.4(b)

It shall be possible to refer to existing files/docu-
ments from an OMS implemented in the metalan-
guage without the need for modifying these files/-
documents.

Documents can be referenced by IRIs, see 9.6.1}

6.5.4(c)

Translations between logical languages shall preserve
(possibly to different degrees) the semantics of the
logical languages. Between a given pair of logical
languages, several translations are possible.

The semantics of DOL is based on a heterogeneous
logical environment, which contains institution co-
morphisms as translations, see [[0.2] Institution
comorphisms preserve semantics in a weak form
through their satisfaction condition. The DOL On-
tology specifies properties of translations (comor-
phisms) preserving more and more of the semantics,
see annex [A]

6.5.5(a)

Informative annexes shall establish the conformance
of a number of relevant logical languages. An ini-
tial set of language translations may be part of an
informative annex.

For conformance of logical languages, see 6.5.5(b)
below. Conformance of some translations is estab-
lished in annex E}

6.5.5(b)

Conformance of the following subset of logical lan-
guages shall be established: OWL2 (with profiles
EL, RL, QL), CLIF, RDF, UML class diagrams.

Conformance of the following languages is estab-
lished: OWL 2 (annex [B), CLIF (annex [C), RDF
and RDF Schema (annex |E[)7 UML class diagrams

(annex |_D

6.5.5(c)

Conformance of a suitable set of translations among
the languages mentioned in the previous bullet point
shall be established.

Conformance of some translations is established in

annex E

6.5.6

Existing standards and best practices for allocating
globally unique identifiers shall be reused. The same
standards and best practices shall also be applied to
associate different representations of the same con-
tent to one unique identifier.

DOL uses IRIs to reference documents (both DOL
documents, as well as documents written in some

conforming language). See

xi
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0. Submission-Specific Material

0.3. Optional Requirements

translations.

ID RFP requirement How this proposal addresses requirement
6.6.1 Submissions may include additional languages with- | This has been left for forthcoming versions.
out a standardized model theory.
6.6.2 Proposals may provide constructs for non-monotonic | Currently, only monotonic logics are supported.
logics. However, DOL provides a circumscription-like non-
monotonic structuring construct with syntax ol
then %minimize o2, see[9.4]and[9.4.2]
6.6.3 A characterization of the trade-offs among different | This is left for future work.

xii




0. Submission-Specific Material

0.4. Issues to be Discussed

ID Discussion item Resolution
6.7.(a) Do existing language standards need to be extended | The goal of DOL is to support existing languages
or adapted in order to make them OntoIOp conform- | without any adaptations, see also 6.5.4(a). However,
ing. in order to meet requirement 6.5.6, DOL-conforming
languages should support the use of IRIs. If they do
not, there is a mechanism for assigning IRIs to (frag-
ments of) language documents even if the language
itself does not support this, see[2:2] Moreover, there
is a mechanism for injecting IRIs in existing language
serializations, see 'ﬁ' and m
6.7.(b) Proposals should discuss whether the semantics of | The semantics of the DOL metalanguage is included
the metalanguage shall be included into the standard | in this specification. The reasons are discussed in
the introduction of clause [T0]
6.7.(c) Proposals should discuss the chosen list of logics and | The chosen list of logics and translations is discussed
translations. in the introduction of annex [H]
6.7.(d) Proposals should discuss a meta-ontology of logical | The DOL Ontology is discussed in annex w
languages and theories.
6.7.(e) Proposals should discuss the use of QVT for express- | This is discussed in annex M
ing logic translations.
6.7.(f) Proposals should discuss the role of APIs. The role of APIs is discussed in section |N.3|
6.7.(g) Proposals should discuss availability and use of tools. | Tools for DOL are discussed in annex |N
6.7.(h) Proposals should discuss a registry of logical lan- | A registry is discussed in annexM

guages.

xiii




0. Submission-Specific Material

0.5. Evaluation Criteria

1D

Criterion

Comment

6.8(a)

Proposals covering a broader range of features and
of use cases will be favored. As a minimum, pro-
posals shall define conformance criteria for logical
languages and translations, and their proposed met-
alanguage shall cover some metalogical relationships
and shall be applicable to multiple logics.

Based on the notion of institution, conformance cri-
teria for logical languages are defined in 2.I] and
those for translations in B.1.1]1 DOL covers several
metalogical relationships, namely entailments, in-
terpretations, equivalences, refinements, alignments
and module relations, see and DOL is ap-
plicable to multiple logics (see also 6.8(c) and
below).

6.8(b)

Proposals covering existing language standards
without (or with fewer) modifications will be fa-
vored.

Any document providing an OMS in a serialization
of a DOL conforming language can be used as-is in
DOL, by reference to its IRI. See IWI'

6.8(c)

Proposals establishing actually (or making this at
least possible in theory) OntolOp conformance of
more logical languages and translations will be fa-
vored.

The conformance of OWL 2 (annex [B), Common
Logic (annex[C), RDF and RDF Schema (annex D)),
UML class diagrams (annex|[E) and CasL (annex
is established.

0.6. Proof of Concept

Prototypical open source tools for DOL are already available, see annex [N] It is expected that they will reach industrial
strength within two or three years.

0.7. Changes to Adopted OMG Specifications

This specification proposes no changes to adopted OMG specifications.

Xiv




1. Scope

This OMG Specification specifies the Distributed Ontology, Modeling and Specification Language (DOL). DOL is designed to
achieve integration and interoperability of ontologies, specifications and MDE models (OMS for short). DOL is a language for
distributed knowledge representation, system specification and model-driven development across multiple OMS, particularly
OMS that have been formalized in different OMS languages. This OMG Specification responds to the OntoIOp Request for
Proposals [27].

1.1. Background Information

Logical languages are used in several fields of computing for the development of formal, machine-processable texts that carry
a formal semantics. Among those fields are 1) Ontologies formalizing domain knowledge, 2) (formal) Models of systems, and
3) the formal Specification of systems. Ontologies, MDE models and specifications will (for the purpose of this document)
henceforth be abbreviated as OMS.

An OMS provides formal descriptions, which range in scope from domain knowledge and activities (ontologies, MDE mod-
els) to properties and behaviors of hardware and software systems (MDE models, specifications). These formal descriptions
can be used for the analysis and verification of domain models, system models and systems themselves, using rigorous and
effective reasoning tools. As systems increase in complexity, it becomes concomitantly less practical to provide a mounolithic
logical cover for all. Instead various MDE models are developed to represent different viewpoints or perspectives on a domain
or system. Hence, interoperability becomes a crucial issue, in particular, formal interoperability, i.e. interoperability that is
based on the formal semantics of the different viewpoints. Interoperability is both about the ability to interface different
domains and systems and the ability to use several OMS in a common application scenario. Further, interoperability is
about coherence and consistency, ensuring at an early stage of the development that a coherent system can be reached.

In complex applications, which involve multiple OMS with overlapping concept spaces, it is often necessary to identify
correspondences between concepts in the different OMS; this is called OMS alignment. While OMS alignment is most
commonly studied for OMS formalized in the same OMS language, the different OMS used by complex applications may
also be written in different OMS languages, which may even vary in their expressiveness. This OMG Specification faces this
diversity not by proposing yet another OMS language that would subsume all the others. Instead, it accepts the diverse
reality and formulates means (on a sound and formal semantic basis) to compare and integrate OMS that are written in
different formalisms. It specifies DOL, a formal language for expressing not only OMS but also mappings between OMS
formalized in different OMS languages.

Thus, DOL gives interoperability a formal grounding and makes heterogeneous OMS and services based on them amenable
to checking of coherence (e.g. consistency, conservativity, intended consequences, and compliance).

1.2. Features Within Scope

The following are within the scope of this OMG Specification:
1. homogeneous OMS as well as heterogeneous OMS (OMS that consist of parts written in different languages);
mappings between OMS (which map OMS symbols to OMS symbols);
OMS networks (involving several OMS and mappings between them);
translations between different OMS languages conforming with DOL (translating a whole OMS to another language);
structuring constructs for modeling non-monotonic behavior;
annotation and documentation of OMS, mappings between OMS, symbols, and sentences;
recommendations of vocabularies for annotating and documenting OMS;
a syntax for embedding the constructs mentioned under 7@ as annotations into existing OMS;
a syntax for expressing 7 as standoff markup that points into existing OMS;
a formal semantics of 7;

11. criteria for existing or future OMS languages to conform with DOL.

© 0 N o otk wN
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The following are outside the scope of this OMG Specification:

1. the (re)definition of elementary OMS languages, i.e. languages that allow the declaration of OMS symbols (non-logical
symbols) and stating sentences about them;



1. Scope

2. algorithms for obtaining mappings between OMS;

3. concrete OMS and their conceptualization and application;

4. mappings between services and devices, and definitions of service and device interoperability;
5. non-monotonic logicsﬂ

This OMG Specification describes the syntax and the semantics of the Distributed Ontology, Modeling and Specification
Language (DOL) by defining an abstract syntax and an associated model-theoretic semantics for DOL.

LOnly monotonic logics are within scope of this specification. Conformance criteria for non-monotonic logics are still under develop-
ment. However, closure (i.e. employing a closed-world assumption) provides non-monotonic reasoning in DOL. It is also possible to
include non-monotonic logics by construing entailments between formulas as sentences of the logic (formalized as an institution).



2. Conformance

This clause defines conformance criteria for languages and logics that can be used with DOL, as well as conformance criteria
for serializations, translations and applications. The conformance of a number of OMS languages (namely OWL 2, Common
Logic, RDF and RDF Schema, UML Class Diagrams, TPTP, CASL) as well as translations among these is discussed in
informative annexes of this OMG Specification.

2.1. Conformance of an OMS Language/a Logic with DOL

Rationale: for an OMS language to conform with DOL,

e its logical language aspect either needs to satisfy certain criteria related to its own abstract syntax and formal
semantics, or there must be a translation (again satisfying certain criteria) to a language that already is DOL-
conforming.

e its structuring language aspect (if present) must be compatible with DOL’s own structuring mechanisms
e its annotation language aspect must be compatible with DOL’s meta-language constructs.

Several conformance levels are defined. They differ with respect to the usage of IRIs as identifiers for all kinds of entities
that the OMS language supports.

An OMS language is conforming with DOL if it satisfies the following conditions:
1. its abstract syntax is specified as an SMOF compliant meta model or as an EBNF grammar;
2. it has at least one serialization in the sense of section [2.2}

3. either there exists a translation of it into a conforming languagﬂ or:
a) the logical language aspect (for expressing basic OMS) is conforming, and in particular has a semantics (see
below),
b) the structuring language aspect (for expressing structured OMS and relations between those) is conforming (see
below), and

c) the annotation language aspect (for expressing comments and annotations) is conforming (see below).

The logical language aspect of an OMS language is conforming with DOL if each logic corresponding to a profile (including
the logic corresponding to the whole logical language aspect) is presented as an institution in the sense of Definition
in clause [I0], and there is a mapping from the abstract syntax of the OMS language to signatures and sentences of the
institution. Note that one OMS language can have several sublanguages or profiles corresponding to several logics (for
example, OWL 2 has profiles EL, RL and QL, apart from the whole OWL 2 itself).

The structuring language aspect of an OMS language is conforming with DOL if it can be mapped to DOL’s structuring
language in a semantics-preserving way. The structuring language aspect may be empty.

The annotation language aspect of an OMS language is conforming with DOL if its constructs have no impact on the
semantics. The annotation language aspect shall be non-empty; it shall provide the facility to express comments.

Concerning item 1. in the definition of DOL conformance of OMS languages above, the following levels of conformance of
the abstract syntax of an OMS language with DOL are defined, listed from highest to lowest:

Full IRI conformance The abstract syntax specifies that IRIs be used for identifying all symbols and entities.

No mandatory use of IRIs The abstract syntax does not require IRIs to be used to identify entities. Note that this includes
the case of optionally supporting IRIs without enforcing their use (such as in Common Logic).

Any conforming language and logic shall have a machine-processable description as detailed in clause [2.3

2.1.1. Conformance of language/logic translations with DOL

Rationale: a translation between logics must satisfy certain criteria in order to conform with DOL. Also, a translation
between OMS languages based on such logics must be consistent with the translation between these logics. Translations
should break neither structuring language aspects nor comments/annotations.

IFor example, consider the translation of OBO1.4 to OWL, giving a formal semantics to OBO1.4.




2. Conformance

A logic translation is conforming with DOL if it is presented either as an institution morphism or as an institution
comorphism.

A language translation shall provide a mapping between the abstract syntaxes (it may also provide mappings between
concrete syntaxes). A language translation from language L1 (based on institution /1) to language Lo (based on institution
I>) is conforming with DOL if it is based on a logic translation such that the following diagram commutes (i.e. following
both possible paths from L; to I> leads to the same result):

mapping between abstract syntaxes
1 2

abstract syntax abstract syntax
to institution to institution

institution (co)morphism
.[1 12

Language translations may also translate the structuring language aspect, in this case, they shall preserve the semantics
of the structuring language aspect. Furthermore, language translations should preserve comments and annotations. All
comments attached to a sentence (or symbol) in the source should be attached to its translation in the target (if there are
more than one sentences (respectively symbols) expressing the translation, to at least one of them).

2.2. Conformance of a Serialization of an OMS Language With DOL

Rationale: The main reason for the following specifications is identifier injection. DOL is capable of assigning identifiers
to entities (symbols, axioms, modules, etc.) inside fragments of OMS languages that occur in a DOL document, even if
that OMS language does not support such identifiers by its own means. Such identifiers will be visible to a DOL tool, but
not to a tool that only supports the OMS language. To achieve this without breaking the formal semantics of that OMS
language, DOL utilizes the annotation or commenting features that the OMS language supports, in order to place such
identifiers inside annotations/ comments. Depending on the nature of a given concrete serialization of the OMS language
(be it plain text, some serialization of RDF, XML, or some other structured text format), one can be more specific about
what the annotation/commenting facilities of that serialization must look like in order to support this identifier injection.
Well-behaved XML and RDF schemas support identifier injection in a ‘nice’ way (rather than using text-level comments). In
the worst case it is not possible to inject something into an OMS language fragment, because the OMS language serialization
does not enable the addition of suitable comments. In this case the solution is to point into the OMS language fragment
from the enclosing context by using standoff markup.

Further conformance criteria in this section are introduced to facilitate the convenient reuse of verbatim fragments of
OMS language inside a DOL document.

Independently from these criteria, several levels of conformance of a serialization are distinguished. They differ with
respect to their means of conveniently abbreviating long IRI identifiers.

There are seven levels of conformance of a serialization of an OMS language with DOL.

XMI conformance An XMI serialization for OMS written in the OMS language has been automatically derived from the
SMOF specification of the abstract syntax, using the canonical MOF 2 XMI Mapping.
XML conformance The given serialization has to be specified as an XML schema that satisfies all of the following conditions:

1. The elements of the schema belong to one or more non-empty XML namespaces.

2. The serialization shall use XML elements to represent all structural elements of an OMS.

3. The schema shall not forbid both attributes and child elements from foreign namespaces (here: the DOL names-
pace http://www.omg.org/spec/DOL/1.0/xml) on any elements. (This is because either an attribute or a
child element is used to inject identifiers into elements of the XML serialization; cf. clause )

RDF conformance The given serialization has to be specified as an RDF vocabulary that satisfies all of the following condi-
tions:

1. The elements of the vocabulary belong to one or more RDF namespaces identified by absolute URIs.

2. The serialization shall specify ways of giving IRIs or URIs to all structural elements of an OMS. (The rationale
is that RDF syntax supports the identification of any kinds of items, so an RDF-based serialization of an OMS
language should not forbid making use of such RDF constructs that do allow for identifying arbitrary items.)

3. There shall be no additional rules (stated in writing in the specification of the serialization, or formalized in its
implementation in, e.g., OWL) that forbid properties from foreign vocabulary namespaces to be stated about
arbitrary subjects for the purpose of annotation.
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2. Conformance

See annex [B]for an example.

Text conformance The given serialization has to satisfy all of the following conditions:

e The serialization conforms with the requirements for the tezt/plain media type specified in IETF/RFC 2046,
section 4.1.3.

e The serialization shall provide a designated comment construct that can be placed sufficiently flexibly as to be
uniquely associated with any non-comment construct of the language. That means, for example, one of the
following:

— The serialization provides a construct that indicates the start and end of a comment and may be placed
before/after each token that represents a structural element of an OMS.

— The serialization provides line-based comments (ranging from an indicated position to the end of a line)
but at the same time allows the flexible placement of line breaks before/after each token that represents a
structural element of an OMS.

Standoff markup conformance An OMS language is standoff markup conforming with DOL if one of its serializations conforms
with the requirements for the tezt/plain media type specified in IETF/RFC 2046, section 4.1.3. Note that conformance
with tezt/plain is a prerequisite for using, for example, fragment URISs in the style of IETF/RFC 5147 for identifying
text ranges.

Independently from the conformance levels given above, there is the following hierarchy of conformance w.r.t. CURIEs
(compact URISs) as a means of abbreviating IRIs (grammar specified in clause [9.6.2), listed from highest to lowest:

Prefixed CURIE conformance The given serialization allows non-logical symbol identifiers to have the syntactic form of a
CURIE, or any subset of the CURIE grammar that allows named prefixes (prefix:reference, where a declaration
of DOL-conformance of a serialization may redefine the separator character to a character different from :). A
serialization that conforms w.r.t. a prefixed CURIE is not required to support CURIEs with no prefix: its declaration
of DOL-conformance may forbid the use of prefixed CURIEs.
Informative comments:
e In the case that CURIEs are used, a prefix map with multiple prefixes may be used to map the non-logical
symbol identifiers of a native OMS to IRIs in multiple namespaces (cf. clause
e The reason for allowing redefinitions of the prefix/reference separator character is that certain serializations of
OMS languages may not allow the colon (:) in identifiers.

Non-prefixed names only The given serialization only supports CURIEs with no prefix, or any subset of the grammar of the
REFERENCE nonterminal in the CURIE grammar.
Informative comment: In this case, a binding for the empty prefix must be declared, as this is the only possibility of
mapping the identifiers of the native OMS to IRIs that are located in one flat namespace.

Any conforming serialization of an OMS language shall have a machine-processable description as detailed in clause [2.3

2.3. Machine-Processable Description of Conforming Languages, Logics, and
Serializations

Rationale: When a parser processes a DOL OMS found somewhere that refers to modules in OMS languages, or
includes them verbatim, the parser needs to know what language to expect; further DOL-supporting software needs to know,
e.g., what other DOL-conforming languages the module in the given OMS language can be translated to. Therefore, all
languages/logics/serializations that conform with DOL are required to describe themselves in a machine-processable way.

For any conforming OMS language, logic, and serialization of an OMS language, it is required that it be assigned an
HTTP IRI, by which it can be identified. It is also required that a machine-processable description of this language/-
logic/serialization is retrievable by dereferencing this IRI; this requirement follows the linked data principles W3C/TR
REC-1dp-20150226:2015. As a minimal requirement, there must be a RDF description conforming to the vocabulary spec-
ified in annex That description must be made available in the RDF /XML serialization when a client requests content
of the MIME type application/rdf+zml. Descriptions of the language/logic/serialization in further representations, having
different content types, may be provided.

2.4. Conformance of a Document With DOL

Rationale: for exchanging DOL documents with other users/tools, nothing that has a formal semantics must be left
implicit. One DOL tool may assume that by default any OMS fragments inside a DOL document are in some fixed OMS
language unless specified otherwise, but another DOL tool can’t be assumed to understand such DOL documents. Defaults
are, however, practically convenient, which is the reason for having the following section about the conformance of an
application.




2. Conformance

A document conforms with DOL if it contains a DOL text that is well-formed according to the grammar. That means, in
particular, that any information related to logics must be made explicit (as foreseen by the DOL abstract syntax specified
in clause E[), such as:

e the logic of each OMS that is part of the DOL document,
e any translation that is employed between two logics (unless it is one of the default translations specified in annex

However, details about aspects of an OMS that do not have a formal, logic-based semantics, may be left implicit. For
example, a conforming document may omit explicit references to matching algorithms that have been employed in obtaining
an alignment.

2.5. Conformance of an Application With DOL

In the sequel, “DOL abstract syntax” means an XMI document that conforms to the DOL metamodel. Optionally, further
representations (e.g. as JSON) can be supported.

e A parser is DOL-conformant if it can parse the DOL textual syntax and produce the corresponding DOL abstract
syntax.

o A printer is DOL-conformant if it can read DOL abstract syntax and produce DOL textual syntax.

e DOL-conformant software that is used to edit, format or manage DOL libraries must be capable of reading and writing
DOL abstract syntax. Moreover, it must meet the requirements for a DOL-conformant parser if it is able to read
in DOL textual input. It must meet the requirements of a DOL-conformant printer if it is able to generate DOL
textual output. However, it is also possible that a software for DOL management will work on the abstract syntax
only, delegating the reading and generation of DOL text to external parsers and/or printers.

e a static analyzer is DOL-conformant if it can compute the logic and the signature of an OMS according to the semantics
defined in section In more detail, a static analyzer can have the following capabilities:

— simple analysis: static analysis of DOL excluding networks and alignments;
— full analysis: static analysis of full DOL.

e a transformation tool is DOL-conformant if it implements one (or more) language translations, logic translations,
language projections and/or logic projections.

e Software that implements machine reasoning about OMS (e.g., theorem proving, approximation) complies with this
specification if and only if it interprets DOL documents according to the semantics defined in section [I0}] In more
detail, a reasoning tool can have the following capabilities:

— simple logical consequence, i.e. checking whether all sentences that are marked as $implied within basic OMS
and extensions are logical consequences of the enclosing OMS;

— structured logical consequence, i.e. checking whether all sentences that are marked as $implied are logical
consequences of the enclosing OMS and whether all entailments in a DOL document have a defined semantics;

— nterpretation, i.e. checking whether all interpretations in a DOL document have a defined semantics;

— simple refinement, i.e. checking whether all refinements of OMS in a DOL document have a defined semantics;

— full refinement, i.e. checking whether all refinements (both of OMS and networks) in a DOL document have a
defined semantics;

— simple conservativity, i.e. checking whether all conservativity statements in a DOL document have a defined
semantics;

— full conservativity, i.e. checking whether all statements about conservative, monomorphic, definitional and weakly
definitional extensions in a DOL document have a defined semantics;

— module extraction, i.e. the ability to compute modules (typically, a given tool will provide this only for some
logics);

— approzimation, i.e. the ability to compute approximations (typically, a given tool will provide this only for some
logics and logic projections);

— full DOL reasoning, i.e. checking whether an DOL document has a defined semantics.

In practice, DOL-aware applications may also deal with documents that are not conforming with DOL according to the
criteria established in clause 2:4] However, an application only conforms with DOL if it is capable of producing DOL-
conforming documents as its output when requested.

DOL-aware applications shall support a fixed (possibly extensible) set of OMS languages conforming with DOL.

It is, for example, possible that a DOL-aware application only supports OWL and Common Logic. In that case, the
application may process DOL documents that mix OWL and Common Logic ontologies, as well as native OWL and Common
Logic documents.

DOL-aware applications also shall be able to strip DOL annotations from embedded fragments in other OMS languages.
Moreover, they shall be able to expand CURIEs into IRIs when requested.
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4. Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

4.1. Distributed Ontology, Modeling and Specification Language

Distributed Ontology, Modeling and Specification Language; DOL unified metalanguage for the structured and hetero-
geneous expression of ontologies, specifications, and MDE models, using DOL libraries of OMS, OMS mappings and OMS
networks, whose syntax and semantics are specified in this OMG Specification.

DOL library collection of named OMS and OMS networks, possibly written in different OMS languages, linked by named
OMS mappings.

4.2. Native OMS, OMS, and OMS Languages

native OMS collection of expressions (like non-logical symbols, sentences and structuring elements) from a given OMS
language.

ExAaMPLE A UML class diagram, an ontology written in OWL 2 EL, and a specification written in CASL are three different
native OMS.

NoTE  An OMS can be written in different OMS language serializations.

native document document containing a native OMS.
DOL document document containing a DOL library.

OMS language language equipped with a formal, declarative, logic-based semantics, plus non-logical annotations.
ExamMpPLE OMS languages include OWL 2 DL, Common Logic, F-logic, UML class diagrams, RDF Schema, and OBO.
NoTE  An OMS language is used for the formal specification of native OMS.

NoOTE An OMS language has a logical language aspect, a structuring language aspect, and an annotation language
aspect.

DOL structured OMS syntactically valid DOL expression denoting an OMS that is built from smaller OMS as building
blocks.

NoOTE DOL structured OMS, typically, use basic OMS as building blocks for defining other structured OMS, OMS
mappings or OMS networks.
NoTe  All DOL structured OMS are structured OMS.

ontology logical theory that is used as a shard conceptualization

MDE model logical theory that is used as an abstract representation of a domain or of a system, in the sense of model-
driven engineering (MDE)
NoTE  Not to be confused with the term model in the sense of logic (model theory).

specification logical theory that is used to express formal constraint in mathematical structures, software systems and/or
hardware systems
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OMS (ontology, specification or MDE model) basic OMS or structured OMS.
NoTE

An OMS is either a basic OMS (which is always a native OMS, and can occur as a text fragment in a DOL document) or
a structured OMS (which can be either a native structured OMS contained in some native document, or a DOL structured
OMS contained in a DOL document).

NoTE  An OMS has a single signature and model class over that signature as its model-theoretic semantics.

basic OMS; flat OMS native OMS that does not utilize any elements from the structuring language aspect of its language.
NoTeE  Basic OMS are self-contained in the sense that their semantics does not depend on some other OMS. In particular,
a basic OMS does not involve any imports.

NoTE  Since a basic OMS has no structuring elements, it consists of (or at least denotes) a signature equipped with a set
of sentences and annotations.

NoTe In signature-free logics like Common Logic or TPTP, a basic OMS only consists of sentences. A signature can be
obtained a posteriori by collecting all non-logical symbols occuring in the sentences.

non-logical symbol; OMS symbol atomic expression or syntactic constituent of an OMS that requires an interpretation
through a model.
Note  This differs from the notion of “atomic sentence™ such sentences may involve several non-logical symbols.

ExaMPLE  Non-logical symbols in OWL W3C/TR REC-owl2-syntax:2009 (there called “entities”) comprise
e individuals (denoting objects from the domain of discourse),
e classes (denoting sets of objects; also called concepts), and
e properties (denoting binary relations over objects; also called roles).

These non-logical symbols are distinguished from logical symbols in OWL, e.g., those for intersection and union of classes.

ExAaMPLE  Non-logical symbols in Common Logic ISO/IEC 24707:2007 comprise
e names (denoting objects from the domain of discourse),
e sequence markers (denoting sequences of objects).

These non-logical symbols are distinguished from logical symbols in Common Logic, e.g. logical connectives and quantifiers.

signature; vocabulary set (or otherwise structured collection) of non-logical symbols of an OMS.

NoteE  The signature of a term is the set of all non-logical symbols occurring in the term. The notion of signature depends
on the OMS language or logic.

NoTeE  The signature of an OMS is usually unequivocally determinable.

model semantic interpretation of all non-logical symbols of a signature.

NoOTE A model of an OMS is a model of the signature of the OMS that also satisfies all the additional constraints
expressed by the OMS. In case of flattenable OMS, these constraints are expressed by the axioms of the OMS.

NOTE This term refers to model in the sense of model theory (a branch of logic). It is not to be confused with MDE
model in the sense of modeling (i.e., the “M” in OMS).

NoTE  The notion of model depends on the OMS language or logic.

expression a finite combination of symbols that are well-formed according to applicable rules (depending on the language)

term syntactic expression either consisting of a single non-logical symbol or recursively composed of other terms (a.k.a. its
subterms).
NoTE A term belongs to the logical language aspect of an OMS language.

sentence term that is either true or false in a given model, i.e. which is assigned a truth value in this model.

NoTE In a model, on the one hand, a sentence is always true or false. In an OMS, on the other hand, a sentence can
have several logical statuses. For example, a sentence can be: an axiom, if postulated to be true; a theorem, if proven from
other axioms and theorems; or a conjecture, if expecting to be proven from other axioms and theorems.

NoTE A sentence can conform to one or more signatures (namely those signatures containing all non-logical symbols
used in the sentence).

NotTe It is quite common that sentences are required to be closed (i.e. have no free variables). However, this depends on
the OMS language at hand.

NoTE A sentence belongs to the logical language aspect of an OMS language.

Nore  The notion of sentence depends on the OMS language or logic.
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satisfaction relation relation between models and sentences indicating which sentences hold true in the model.
NoTeE  The satisfaction relation depends on the OMS language or logic.

logical theory signature equipped with a set of sentences over the signature.

NoTeE  Each logical theory can also be written a basic OMS, and conversely each basic OMS has as its semantics a logical
theory.

entailment; logical consequence; specialization relation between two OMS (or an OMS and a sentence, or two OMS
networks, or an OMS network and an OMS) expressing that the second item (the conclusion) is logically implied by the first
one (the premise).

NoTeE  Entailment expresses that each model satisfying the premise also satisfies the conclusion.

NoTE  The converse is generalization.
axiom sentence that is postulated to be valid (i.e. true in every model).

theorem sentence that has been proven from other axioms and theorems and therefore has been demonstrated to be a
logical consequence of the axioms.

tool software for processing DOL libraries and OMS.
theorem proving process of demonstraing that a sentence (or OMS) is the logical consequence of some OMS.

theorem prover tool implementing theorem proving.

4.3. Structured OMS

structured OMS OMS that results from other (basic and structured) OMS by import, union, combination, OMS transla-
tion, OMS reduction or other structuring operations.

NoTeE  Structured OMS are either DOL structured OMS or native OMS that utilize elements of the structuring language
aspect of their OMS language.

flattenable OMS OMS that can be seen, by purely syntactical means, to be logically equivalent to a flat OMS.
NoTE  More precisely, an OMS is flattenable if and only if it is either a basic OMS or it is an extension, union, translation,
module, approximation, filtering, or reference of named OMS involving only flattenable OMS.

elusive OMS OMS that is not flattenable.

subOMS OMS whose associated sets of non-logical symbols and sentences are subsets of those present in a given larger
OMS.

import reference to an OMS behaving as if it were verbatim included; also import of DOL libraries.

Note Semantically, an import of Oz into O; is equivalent to the verbatim inclusion of Oz in place of the import
declaration.

NoTeE  The purpose of Oz importing O, is to make non-logical symbols and sentences of O; available in Os.

NOTE Importing O; into Oz turns O; into an extension of O;.

NoTE  An owl:import in OWL is an import.

NoTe  The import of a whole DOL library into another DOL library is also called import.

union DOL structured OMS expressing the aggregation of several OMS to a new OMS, without any renaming.

OMS translation DOL structured OMS expressing the assignment of new names to some non-logical symbols of an OMS,
or translation of an OMS along a language translation.

NoTE  An OMS translation results in an OMS mapping between the original and the renamed OMS.

NOTE Typically, the resulting OMS mapping of a translation is surjective: the symbols of the original OMS can be

identified by the renaming, but no new symbols are added.

OMS reduction DOL structured OMS expressing the restriction of an OMS to a smaller signature.
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local environment context for an OMS, being the signature built from all previously-declared symbols and axioms.

extension structured OMS extending a given OMS with new symbols and sentences.
NOTE The new symbols and sentences are interpreted relative to the local envorinment, which is the signature of the
“given OMS”.

extension mapping inclusion OMS mapping between two OMS where the sets of non-logical symbols and sentences of the
second OMS are supersets of those present in the first OMS.
NoTE  The second OMS is said to extend the first, and is an extension of the first OMS.

conservative extension extension that does not add new logical properties with respect to the signature of the extended
OMS.

NoTE An extension is a consequence-theoretic or model-theoretic conservative extension. If used without qualification,
the consequence-theoretic version is meant.

consequence-theoretic conservative extension extension that does not add new theorems (in terms of the unextended
signature).

NoTE An extension Oz of an OMS O is a consequence-theoretic conservative extension, if all properties formulated in
the signature of O; hold for O; whenever they hold for O,.

model-theoretic conservative extension extension that does not lead to a restriction of class of models of an OMS.
NoOTE An extension Oz of an OMS O; is a model-theoretic conservative extension, if each model of O; can be expanded
to a model of O-.

Note  Each model-theoretic conservative extension is also a consequence-theoretic one, but not vice versa.

monomorphic extension extension whose newly introduced non-logical symbols are interpreted in a way unique up to
isomorphism.

NoTE  An extension Oz of an OMS O; is a monomorphic extension, if each model of O; can be expanded to a model of
O; that is unique up to isomorphism.

NoTE Each monomorphic extension is also a model-theoretic conservative extension but not vice versa.

definitional extension extension whose newly introduced non-logical symbols are interpreted in a unique way.

NoOTE An extension Oz of an OMS O; is a definitional extension, if each model of O; can be uniquely expanded to a
model of Os.

NoOTE O3 being a definitional extension of O; implies a bijective correspondence between the classes of models of O3 and
O;.

NoTE Each definitional extension is also a monomorphic extension but not vice versa.

weak definitional extension extension whose newly introduced non-logical symbols can be interpreted in at most one
way.

NoTE  An extension Oz of an OMS O; is a weak definitional extension, if each model of O; can be expanded to at most
one model of Os.

NOTE  An extension is definitional if and only if it is both weakly definitional and model-theoretically conservative.

implied extension model-theoretic conservative extension that does not introduce new non-logical symbols.

NoTE A counservative extension O» of an OMS O; is an implied extension, if and only if the signature of O is the
signature of O1. Oz is an implied extension of O; if and only if the model class of O3 is the model class of O;.

NoTeE  Each implied extension is also a definitional extension but not vice versa.

consistency property of an OMS expressing that it has a non-trivial set of logical consequences in the sense that not every
sentence follows from the OMS.

NoTE The opposite is inconsistency.

NOTE In many (but not all) logics, consistency of an OMS equivalently can be defined as false not being a logical
consequence of the OMS. However, this does not work for logics that e.g. do not feature a false. See [65] for a more detailed
discussion.

satisfiability property of an OMS expressing that it is satisfied by least one model.

Note  The opposite is unsatisfiability.
NoTE  Any satisfiable OMS is consistent, but there are some logics where the converse does not hold.
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model finding process that finds models of an OMS and thus proves it to be satisfiable.
model finder tool that implements model finding.

module structured OMS expressing a subOMS that conservatively extends to the whole OMS.
NoOTE The conservative extension can be either model-theoretic or consequence-theoretic; without qualification, the
consequence-theoretic version is used.

module extraction activity of obtaining from an OMS concrete modules to be used for a particular purpose (e.g. to contain
a particular sub-signature of the original OMS).

NoTteE  Cited and slightly adapted from [75].

NoTE  The goal of module extraction is “decomposing an OMS into smaller, more manageable modules with appropriate
dependencies” [74].

ExAMPLE  Assume one extracts a module about white wines from an OWL DL ontology about wines of any kind. That
module would contain the declaration of the non-logical symbol “white wine”, all declarations of non-logical symbols related
to “white wine”, and all sentences about all of these non-logical symbols.

approximant logically implied theory (possibly after suitable translation) of an OMS in a smaller signature or a sublan-
guage.

maximum approximant best possible approximant of an OMS in a smaller signature or a sublanguage.
NoTE Technically, a maximum approximant is a uniform interpolant, see [52].

approximation structured OMS that expresses a maximum approximant.

filtering structured OMS expressing the verbatim removal of symbols or axioms from an OMS.
NoTte  If a symbol is removed, all axioms containing that symbol are removed, too.

closed world assumption default assumption about facts whose status in unknown.

closure; circumscription structured OMS expressing a variant of the closed world assumption by restricting the models
to those that are minimal, maximal, free or cofree (with respect to the local environment).

NOTE  Symbols from the local environment are assumed to have a fixed interpretation. Only the symbols newly declared
in the closure are forced to have minimal or maximal interpretation.

NoTE DOL supports four different forms of closure: minimization and maximization as well as freeness and cofreeness
(explained below).

NoTeE  See [56], [49].
minimization form of closure that restricts the models to those that are minimal (with respect to the local environment).
maximization form of closure that restricts the models to those that are maximal (with respect to the local environment).

freeness special type of closure, restriction of models to those that are free (with respect to the local environment).
NoTte In first-order logic (and similar logics), freeness means minimal interpretation of predicates and minimal equality
among data values. Freeness can be used for the specification of inductive datatypes like numbers, lists, trees, bags etc. In
order to specify e.g. lists over some elements, the specification of the elements should be in the local environment.

cofreeness special type of closure, restriction of models to those that are cofree (with respect to the local environment).
Note In first-order logic (and similar logics), cofreeness means maximal interpretation of predicates and equality being
observable equivalence. Cofreeness can be used for the specification of coinductive datatypes like infinite lists and streams.

combination structured OMS expressing the aggregation of all the OMS in an OMS network, where non-logical symbols
are shared according to the OMS mappings in the OMS network.

ExaMpPLE Consider an ontology involving a concept Person, and another one involving Human being, and an alignment
that relates these two concepts. In the combination of the ontologies along the alignment, there is only one concept,
representing both Person and Human being.
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sharing property of OMS symbols being mapped to the same symbol when computing a combination of an OMS network.
NoTE  Sharing is always relative to a given OMS network that relates different OMS. That is, two given OMS symbols
can share with respect to one OMS network, and not share with respect to some other OMS network.

4.4. Mappings Between OMS

OMS mapping; link relationship between two OMS.

symbol map item pair of symbols of two OMS, indicating how a symbol from the first OMS is mapped by a signature
morphism to a symbol of the second OMS

NoTE A symbol map item is given as s; — sz, where s; is a symbol from the source OMS and s2 is a symbol from the
target of the OMS mapping.

NoTE  Similar to correspondence.

signature morphism mapping between two signatures, preserving the structure of the source signature within the target
signature

NoTeE  Each signature morphism has an underlying list of symbol map items. Conversely, a list of symbol map items may
induce a signature morphism (but generally, it does not so in all cases).

interpretation; view; refinement OMS mapping that postulates a specialization relation between two OMS along a mor-
phism between their signatures.

NoOTE  An interpretation typically leads to proof obligations, i.e. one has to prove that translations of axioms of the source
OMS along the morphism accompanying the interpretation are theorems in the target OMS.

equivalence OMS mapping ensuring that two OMS share the same definable concepts.
NoTe Two OMS are equivalent if they have a common definitional extension. The OMS may be written in different OMS
languages.

interface signature signature mediating between an OMS and a module of that OMS in the sense that it contains those
non-logical symbols that the sentences of the module and the sentences of the OMS have in common.
NoTe  Adapted from [26].

module relation OMS mapping stating that one OMS is a module of the other one.

alignment an OMS mapping expressing a collection of semantic relations between entities of the two OMS.
NoTeE  Alignments consist of correspondences, each of which may have a confidence value. If all confidence values are 1,
the alignment can be given a formal, logic-based semantics.

correspondence relationship between an non-logical symbol e; from an OMS O; and an non-logical symbol e from an
OMS Og, or between an non-logical symbol e; from O; and a term ¢5 formed from non-logical symbols from Os.

€2
ta
asserted to hold between the two non-logical symbols/terms, and 0 < ¢ < 1 is a confidence value. R and ¢ may be omitted:
When R is omitted, it defaults to the equivalence relation, unless another default relation has been explicitly specified; when
¢ is omitted, it defaults to 1.

NoTE A confidence value of 1 does not imply logical equivalence (cf. [45] for a worked-out example).

NoTeE Not all OMS languages implement logical equivalence. For example, OWL does not implement logical equivalence in
general, but separately implements equivalence relations restricted to individuals (owl:sameAs), classes (owl:equivalentClass)
and properties (owl:equivalentProperty).

NoTE A correspondence is given as a quadruple (el,R,{ },c), where R denotes the type of relationship that is

matching algorithmic procedure that generates an alignment for two given OMS.
NoTte  For both matching and alignment, see [21] [38].

matcher tool that implements matching.
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OMS network; distributed OMS; hyperontology graph with OMS as nodes and OMS mappings as edges, showing how
the OMS are interlinked.

NoTte In [66], a distinction between focused and distributed heterogeneous specifications is made. In the terminology of
this standard, this is the distinction between OMS and OMS networks.

NoTE  An OMS network is a diagram of OMS in the sense of category theory, but different from a diagram in the sense
of model-driven engineering.

NoTE The links between the nodes of a network can be given using interpretations or alignments. Imports between
the nodes of a network are automatically included in the network. By including an interpretation or an alignment in a
distributed OMS, the involved nodes are automatically included.

ExaMPLE Consider two ontologies and an interpretation between them. In the network of the interpretation there are
two nodes, one for each ontology, and one edge from the source ontology to the target ontology of the interpretation.

category a collection of objects with suitable morphisms between them.

NoTE In this standard, objects of a category are usually signatures or OMS, and morphisms are signature morphisms,
or OMS mappings. In principle, no assumption about the exact nature of objects and morphisms is made.

NoOTE The morphisms determine which part of the structure of the objects is relevant, i.e. preserved by morphisms.
Hence, objects can be seen as “sets with structure”, and morphisms as “structure-preserving maps”. However note that not
all categories can be obtained in this way.

4.5. Features of OMS Languages

mapping; function relation between a set of inputs and a set of permissible outputs with the property that each input is
related to exactly one output.
NoTE In some cases is a morphism, as in category theory.

language mapping mapping between languages
Note  This is a general term, subsuming OMS language translation, logic translation and logic reduction below.

OMS language translation mapping from constructs in the source OMS language to their equivalents in the target OMS
language.

NoTE  An OMS language translation shall satisfy the property that the result of a translation is a well-formed text in the
target language.

graph set of objects (nodes) that are connected by links (edges).

OMS language graph graph of OMS languages and OMS language translations, typically used in a heterogeneous envi-
ronment.
NoTe In an OMS language graph, some of the OMS language translations can be marked to be default translations.

default translation specially marked OMS language translation or logic translation that will be used whenever a translation
is needed and no explicit translation is given.

heterogeneous environment environment for the expression of homogeneous and heterogeneous OMS, comprising a logic
graph, an OMS language graph and supports relations.

NoTe  The support relations specify which language supports which logics and which serializations, and which language
translation supports which logic translation or reduction. Moreover, each language has a default logic and a default serial-
ization.

NoTeE  Although in principle, there can be many heterogeneous environments, for ensuring interoperability, there will be
a global heterogeneous environment (maintained in some registry), with subenvironments for specific purposes.

sublanguage syntactically specified subset of a given language, consisting of a subset of its meta classes (abstract syntax)
and terminal and nonterminal symbols and grammar rules (concrete syntax).

language aspect a set of language constructs of a given language, not necessarily forming a sublanguage.

logical language aspect the (unique) language aspect of an OMS language that enables the expression of non-logical
symbols and sentences in a logic.
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structuring language aspect the (unique) language aspect of an OMS language that covers structured OMS as well as
the relations of basic OMS and structured OMS to each other, including, but not limited to imports, OMS mappings,
conservative extensions, and the handling of prefixes for CURIEs.

annotation language aspect the (unique) language aspect of an OMS language that enables the expression of comments
and annotations.

profile (syntactic) sublanguage of an OMS language interpreted according to a particular logic that targets specific appli-
cations or reasoning methods.

ExamMpPLE Profiles of OWL 2 include OWL 2 EL, OWL 2 QL, OWL 2 RL, OWL 2 DL, and OWL 2 Full.

NoTE  Profiles typically correspond to sublogics.

NoTeE  Profiles can have different logics, even with completely different semantics, e.g. OWL 2 DL versus OWL 2 Full.
Note  The logic needs to support the language.

4.6. Logic

logic specification of valid reasoning that comprises signatures (user defined vocabularies), models (interpretations of
these), sentences (constraints on models), and a satisfaction relation between models and sentences.

NoTE  Most OMS languages have an underlying logic.

EXAMPLE SROZQ(D) is the logic underlying OWL 2 DL.

NoTte  See annex [H|for the organization of the relation between OMS languages and their logics and serializations.

supports relation relation between OMS languages and logics expressing the logical language aspect of the former, namely
that the constructs of the former lead to a logical theory in the latter.

NoTe  There is also a supports relation between OMS languages and serializations, and one betwwen language translations
and logic translations/reductions.

exact logical expressivity strengthening of the supports relation between languages and logics, stating that the language
has exactly the expressivity of the logic.

institution metaframework mathematically formalizing the notion of a logic, providing formal interfaces for the notions of
signature, model, sentence and satisfaction.

NoTe In order to support a broad range of OMS languages and enable interoperability between them, the DOL semantics
has to abstract from the differences of the logic language aspects of OMS languages. Institutions provide a formal framework
that enables this abstraction.

NoTeE  The notion of institution uses category theory for providing formal interfaces for the notions of signature, model,
sentence and satisfaction.

NoTE  See Definition 2l in clause [I0] for a formal definition.

plain mapping logic mapping that maps signatures to signatures and therefore does not use infrastructure axioms.
translation mapping between languages or logics representing all structure, in contrast to reduction.

reduction mapping between languages or logics forgetting parts of the structure, projection to a smaller language or logic.

logic translation translation of a source logic into a target logic (mapping signatures, sentences and models) that keeps
or encodes the logical content of OMS.

logic reduction reduction of a source logic onto a (usually less expressive) target logic (mapping signatures, sentences and
models) that forgets those parts of the logical structure not fitting the target logic.

simple theoroidal logic translation translation that maps signatures of the source logic to theories (i.e. signatures and
sets of sentences) of the target logic.

ExAMPLE The translation from OWL to multi-sorted first-order logic translates each OWL built-in type to its first-order
axiomatization as a datatype.

sublogic a logic that is a syntactic restriction of another logic, inheriting its semantics.
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logic graph graph of logics, logic translations and logic reductions, typically used in a heterogeneous environment.
NoTE In a logic graph, some of the logic translations and reductions can be marked to be default translations.

homogeneous OMS OMS whose parts are all formulated in one and the same logic.
NoTe  The opposite of heterogeneous OMS.

heterogeneous OMS OMS whose parts are formulated in different logics.
NoTeE  The opposite of homogeneous OMS.
ExaMPLE  See section [[3l

faithful mapping logic mapping that preserves and reflects logical consequence

model-expansive mapping logic mapping that has a surjective model translation (ensuring faithfulness of the mapping)
model-bijective mapping logic mapping that has a bijective mapping of models

exact mapping logic mapping that is compatible with certain DOL structuring constructs

weakly exact mapping logic mapping that is weakly compatible with certain DOL structuring constructs

embedding logic mapping that embeds the source into the target logic, using components that are embeddings and (in
the case of model translations) isomorphism.

sublogic logic embedding that is “syntactic” in the sense that signature and sentence translations are inclusions.

adjointness relation between a logic translation and a logic reduction, expressing that they share their sentence and model
translations, while the signature translations are adjoint to each other (in the sense of category theory).

4.7. Interoperability

logically interoperable property of structured OMS, which may be written in different OMS languages supporting different
logics, of being usable jointly in a coherent way (via suitable OMS language translations), such that the notions of their
overall consistency and logical entailment have a precise logical semantics.

NoOTE Within ISO 19763 and ISO 20943, metamodel interoperability is equivalent to the existence of mapping, which
are statements that the domains represented by two MDE models intersect and there is a need to register details of the
correspondence between the structures in the MDE models that semantically represent this overlap. Within these standards,
an MDE model is a representation of some aspect of a domain of interest using a normative modeling facility and modeling
constructs.

The notion of logical interoperability is distinct from the notion of interoperability used in ISO/IEC 2381-1 Information
Technology Vocabulary — Part 1: Fundamental Terms, which is restricted to the capability to communicate, execute pro-
grams, or transfer data among various hardware or software entities in a manner that requires the user to have little or no
knowledge of the unique characteristics of those entities.

OMS interoperability relation among OMS (via OMS alignments) which are logically interoperable.

4.8. Abstract and Concrete Syntax

concrete syntax ; serialization specific syntactic encoding of a given OMS language or of DOL.

NOTE Serializations serve as standard formats for exchanging DOL documents and OMS between human beings and
tools.

ExaMPLE OWL uses the term “serialization”; the following are standard OWL serializations: OWL functional-style syntax,
OWL/XML, OWL Manchester syntax, plus any standard serialization of RDF (e.g. RDF /XML, Turtle, ...). However, W3C
specifications only require an RDF /XML implementation for OWL2 tools.

ExampLE Common Logic uses the term “dialect”; the following are standard Common Logic dialects: Common Logic
Interchange Format (CLIF), Conceptual Graph Interchange Format (CGIF), eXtended Common Logic Markup Language
(XCL).

document result of serializing an OMS or DOL library using a given serialization.

17



4. Terms and Definitions

standoff markup way of providing annotations to subjects in external resources, without embedding them into the original
resource (here: OMS).

abstract syntax; parse tree term language for representing documents in a machine-processable way
NoTE An abstract syntax can be specified as a MOF metamodel. Then abstract abstract syntax documents can be
represented as XMI documents.

4.9. Semantics

formalization precise mathematical entity capturing an informal or semi-formal entity.

formal semantics assignment of a mathematical meaning to a language by mapping the abstract syntax to suitable
semantic domains.
NoTeE A formal semantics is a formalization of the meaning of a language.

semantic domain mathematically-defined set of values that can represent the intended meanings of language constructs.
semantic rule specification of a mapping from expressions for some meta class in the abstract syntax to a semantic domain.

global environment mapping from identifiers (IRIs) to values in semantics domains representing the global knowledge
about OMS.

4.10. Semantic Web

resource something that can be globally identified.

Note IETF/RFC 3986:2005, Section 1.1 deliberately defines a resource as “in a general sense [...] whatever might be
identified by [an IRI|”. The original source refers to URIs, but DOL uses the compatible IRI standard IETF/RFC 3987:2005
for identification.

ExAaMPLE Familiar examples include an electronic document, an image, a source of information with a consistent purpose
(e.g., “today’s weather report for Los Angeles”), a service (e.g., an HTTP-to-SMS gateway), and a collection of other
resources. A resource is not necessarily accessible via the Internet; e.g., human beings, corporations, and bound books
in a library can also be resources. Likewise, abstract concepts can be resources, such as the operators and operands of a
mathematical equation, the types of a relationship (e.g., “parent” or “employee”), or numeric values (e.g., zero, one, and
infinity). See IETF/RFC 3986:2005, Section 1.1

element (of an OMS) any resource in an OMS (e.g. a non-logical symbol, a sentence, a correspondence, the OMS itself,
..) or a named set of such resources.

linked data structured data that is published on the Web in a machine-processable way, according to principles specified
in W3C/TR REC-1dp-20150226:2015']

NoTeE  The linked data principles (adapted from W3C/TR REC-1dp-20150226:2015 and its paraphrase at [79]) are the
following:

1. Use IRIs as names for things.

2. Use HTTP IRIs so that these things can be referred to and looked up (“dereferenced”) by people and user agents.
(Le., the IRI is treated as a URL (uniform resource locator).)

3. Provide useful machine-processable (plus optionally human-readable) information about the thing when its IRI is
dereferenced, using standard formats.

4. Include links to other, related IRIs in the exposed data to improve discovery of other related information on the Web.

NoTtE  RDF, serialized as RDF/XML [31], is the most common format for publishing linked data. However, its usage is
not mandatory.

NoOTE Using HTTP content negotiation [22] it is possible to serve representations in different formats from the same
URL.

!The original source is widely accepted but not formally a standard [48].
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4.11. OMS Annotation and Documentation

annotation additional information without a logical semantics that is attached to an element of an OMS.

NoTeE Formally, an annotation is given as a (subject, predicate, object) triple as defined by SOURCE: W3C/TR REC-
rdfl1-concepts:2014, Section 3.1. The subject of an annotation is an element of an OMS. The predicate is an RDF property
defined in an external OMS and describes in what way the annotation object is related to the annotation subject.

Note  According to note[d.11]it is possible to interpret annotations under an RDF semantics. “Without a logical semantics”
in this definition means that annotations to an OMS are not considered sentences of that OMS.

OMS documentation set of all annotations to an OMS, plus any other documents and explanatory comments generated
during or after development or deployment of the OMS.
NoTte  Adapted from [75].
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5. Symbols

As listed below, these symbols and abbreviations are generally for the main clauses of the OMG Specification. Some annexes
may introduce their own symbols and abbreviations which will be grouped together within that annex.

CASL
CGIF
CL
CLIF
CURIE
DDL
DOL
DTV
EBNF
E-connections
F-logic
IRI
MOF
OCL
OWL 2

OWL 2 DL
OWL 2 EL
OWL 2 Full

OWL 2 QL
OWL 2 RL
OWL 2 XML
P-DL

RDF
RDFS
RDFa
RDF /XML
RIF

SBVR
SMOF
UML

URI

URL

W3C

XMI

XML

Common Algebraic Specification Language, specified by the Common Framework Initiative
Conceptual Graph Interchange Format

Common Logic

Common Logic Interchange Format

Compact URI expression

Distributed description logic

Distributed Ontology, Modeling and Specification Language

Date-Time Vocabulary

Extended Backus-Naur Form

a modular ontology language (closely related to DDL)

frame logic, an object-oriented ontology language

Internationalized Resource Identifier

Meta-Object Facility

Object Constraint Language

Web Ontology Language (W3C), version 2: family of knowledge representation languages for authoring
ontologies

description logic profile of OWL 2

a sub-Boolean profile of OWL 2 (used often e.g. in medical ontologies)

the language that is determined by RDF graphs being interpreted using the OWL 2 RDF-Based Seman-
tics [29]

profile of OWL 2 designed to support fast query answering over large amounts of data
fragment of OWL 2 designed to support rule-based reasoning

XML-based serialization of the OWL 2 language

Package-based description logic

Resource Description Framework, a graph data model

RDF Schema

a set of XML attributes for embedding RDF graphs into XML documents

an XML serialization of the RDF data model

Rule Interchange Format

Semantics of Business Vocabulary and Business Rules

MOF Support for Semantic Structures

Unified Modeling Language

Uniform Resource Identifier

Uniform Resource Locator

World Wide Web Consortium

XML Metadata Interchange

eXtensible Markup Language
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6. Additional Information

(Informative)

6.1. Changes to Adopted OMG Specifications

This specification does not require or request any change to any other OMG specification.

6.2. How to Read This Specification

The initial five clauses of this specification describe the scope of the specification, determine conformance criteria, provide
normative references, define terms and definitions, and introduce symbols that are used in the specification. The next three
clauses are informative. This clause provides some background information, the next two provide a high-level summary of
usage scenarios and goals (clause [7) and an overview over the design of DOL (clause .

Clause |§| defines the abstract syntax of DOL (normative) as an SMOF compliant meta model. Further, the same clause
also provides a human friendly text serialization of the abstract syntax of DOL (normative).
Annex [J| contains the abstract syntax specified using Extended Backus—Naur Form (EBNF) (informative).

Clause [10] defines the model-theoretic semantics of DOL on the abstract syntax, and also makes the notion of heterogeneous
logical environment (providing languages, logics and translations) precise (normative).

Annex [A] specifies an RDF vocabulary for the terms in clause [d and for OMS languages and translation that conform with
DOL (normative).

Various languages are shown to conform to DOL in informative annexes: OWL2 (annex , Common Logic (annex, RDF
and RDF Schema (annex D), UML class diagrams (annex [E] TPTP (annex [F]), and CasL (annex [G)).

Annex [H] provides a core graph of logics and translations, covering those OMS languages whose conformance with DOL is
established in the preceding annexes (informative). Annex || extends the graph presented in Annex [H| by a list of OMS
language whose conformance with DOL will be established by a registry (informative).

Annex [[] provides of DOL texts, which provide examples for all DOL constructs, which are specified in the abstract syntax
(informative). Annexsketches scenarios that outline how DOL is intended to be applied (informative). For each scenario,
a brief description is provided, and the utilized DOL features as well as the status of its implementation are listed.

Annex [N] gives an overview of available software tools for DOL. Annex [O] discusses the implementation of a linked-data
compliant IRI scheme used in one of these tools (informative).

The bibliography contains [P| references to the literature that is cited in this document (informative).
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7. Goals and Usage Scenarios

(Informative)

Often, engineering tasks require the use of several different OMS, which represent knowledge about a given domain or
specify a given system from different perspectives or for different purposes. (E.g., a software engineer will typically use
different OMS to model different aspects of a software system, including its behavior, its components, and its interactions
with other systems.) Further, the OMS are often represented in different OMS languages (e.g., UML class diagrams, OWL,
or Common Logic), which may differ in style, expressivity, and different computational properties.

The use of different OMS within the same context leads to several challenges in the design and deployment of OMS, which
have been addressed by current research in ontological engineering, formal software specification and formal modeling:

e How is it possible to support shareability and reusability of OMS within the same domain?

e How is it possible to merge OMS in different domains, particularly in the cases in which the OMS are axiomatized in
different logical languages?

e What notions of modularity play a role when only part of an OMS is being shared or reused?
e What are the relationships between versions of an OMS axiomatized in different logical languages?

To illustrate these challenges, this clause presents a set of usage scenarios that involve the use of more than one OMS.
These scenarios address the areas of ontology design, formal specification, and model-driven development. In spite of their
many differences, they all highlight one common theme: the use of multiple OMS leads to interoperability challenges.

The purpose of DOL is to provide a standardized representation language, which can be used to represent structured OMS
and the relations between OMS as part of OMS networks in a semantically well-defined way. Thus, tools that implement
DOL are able to integrate different OMS into a coherent whole, thereby enabling users of DOL to overcome the different
kind of interoperability issues that are illustrated by the usage scenarios in this clause.

Most of the following subsections are illustrated with sample DOL libraries. These are always written in DOL, see the
DOL Text Serialization in clause @ Naturally, they also contain parts written in different OMS languages (e.g. OWL), the
syntax of which is not described in this standard, but in other standard documents.

7.1. Use Case Onto-1: Interoperability Between OWL and FOL Ontologies

In order to achieve interoperability during ontology development it is often necessary to describe concepts in a language
more expressive than OWL. Therefore, it is common practice to informally annotate OWL ontologies with FOL axioms
(e.g., Keet’s mereotopological ontology [37], Dolce Lite [54], BFO-OWL). OWL is used because of better tool support,
FOL because of greater expressiveness. However, relegating FOL axioms to informal annotations means that these are
not available for machine processing. Another example of this problem is the following: For formally representing concept
schemes (including taxonomies, thesauri and classification schemes) and provenance information there are the two W3C
standards SKOS (Simple Knowledge Organization System; W3C/TR REC-skos-reference:2009) and PROV, as well as ISO
and other domain-specific standards for metadata representation. The semantics for the SKOS and PROV languages are
largely specified as OWL ontologies; however, as OWL cannot capture the full semantics, the rest is specified using some
informal first-order rules. In other words, valid instance models that use SKOS or PROV may be required to satisfy both
OWL and FOL axioms. When solving reasoning tasks over either SKOS or PROV ontologies, OWL reasoners are not able
to consider the FOL axioms. Hence, the information contained in these axioms is lost.

DOL allows the user to replace such informal annotations by formal axioms in a suitable ontology language. The relation
between the OWL ontology and the FOL axioms is that of a heterogeneous import. In the result, both the OWL and the
FOL axioms are amenable to, e.g., automated consistency checking and theorem proving. Hence, all available information
can be used in the reasoning process. For example, the ontology below extends the OWL definition of isProperPartOf as
an asymmetric relation with a first-order axiom (in Common Logic) asserting that the relation is also transitive.

sprefix ( lang: <http://purl.net/DOL/languages/>
%% descriptions of languages
trans: <http://purl.net/DOL/translations/> )%

%% ... and translations

language lang:CommonLogic
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ontology Parthood =
ObjectProperty: isProperPartOf
Characteristics: Asymmetric
SubPropertyOf: isPartOf
with translation trans:SROIQtoCL
then
(if (and (isProperPartOf x y) (isProperPartOf y z))
(isProperPartOf x z))

OWL can express transitivity, but not together with asymmetry.

7.2. Use Case Onto-2: Ontology Integration by Means of a Foundational
Ontology

One major use case for ontologies in industry is to achieve interoperability and data integration. However if ontologies are
developed independently and used within the same domain, the differences between the ontologies may actually impede
interoperability. One strategy to avoid this problem is the use of a shared foundational ontology (e.g., DOLCE or BFO),
which can be used to harmonize different domain ontologies. One challenge for this approach is that foundational ontologies
typically rely on expressive ontology languages (e.g., Common Logic), while domain ontologies may be represented in
languages that are optimized for performance (e.g., OWL EL). For this reason, currently the role of the foundational
ontology is mainly to provide a conceptual framework that may be reused by the domain ontologies; further, watered-down
versions of the foundational ontologies in OWL (like DOLCE-lite or the OWL version of BFO) are used as basis for the
development of domain ontologies, be this as is, in an even less expressive version (e.g., a DOLCE-lite in OWL 2 EL),
or only a relevant subset thereof (e.g., only the branch of endurants). A sample orchestration of interactions between the
foundational and domain ontologies in various languages is depicted in Figure [B:I] below.

DOL provides the framework for integrating different domain ontologies, aligning these to foundational ontologies |21}, [I8]
and combining the aligned ontologies into a coherent integrated ontology — even across different ontology languages. Thus,
DOL enables ontology developers to utilize the complete, and most expressive, foundational ontologies for ontology integration
and validation purposes.

The foundational ontology (FO) repository Repository of Ontologies for MULtiple USes (ROMULUSE contains alignments
between a number of foundational ontologies, expressing semantic relations between the aligned entities. For this use-case
three such ontologies are considered, containing spatial and temporal concepts: DOLCEEL GFqu and BFdﬂ and present
alignments between them using DOL syntax:

sprefix (
gfo: <http://www.onto-med.de/ontologies/>
dolce: <http://www.loa-cnr.it/ontologies/>
bfo: <http://www.ifomis.org/bfo/>

lang: <http://purl.net/DOL/languages/>

)

o

language lang:OWL

alignment DolceLite2BFO :
dolce:DOLCE-Lite.owl

to

bfo:1.1 =

endurant = IndependentContinuant,

physical-endurant = MaterialEntity,

physical-object = Object, perdurant = Occurrent,

process = Process, quality = Quality,
spatio-temporal-region = SpatiotemporalRegion,

temporal-region = TemporalRegion, space-region = SpatialRegion

alignment DolcelLite2GFO :
dolce:DOLCE-Lite.owl to gfo:gfo.owl =

particular = Individual, endurant = Presential,

physical-object = Material object, amount-of-matter = Amount_of_ substrate,
perdurant = Occurrent, quality = Property,

time-interval = Chronoid, generic-dependent < necessary_for,

lSee http://www.thezfiles.co.za/ROMULUS/home.html
2See http://www.loa.istc.cnr.it/DOLCE.html

3See http://www.onto-med.de/ontologies/gfo/

4See http://www.ifomis.org/bfo/
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part < abstract_has_part, part-of < abstract_part_of,
proper—-part < has_proper_part, proper-part-of < proper_part_of,
generic-location < occupies, generic-location-of < occupied_by

alignment BFO2GFO :
bfo:1.1 to gfo:gfo.owl =
Entity = Entity, Object = Material_object,

ObjectBoundary = Material_boundary, Role < Role ,
Occurrent = Occurrent, Process = Process, Quality = Property
SpatialRegion = Spatial_region, TemporalRegion = Temporal_region

DOL can be used to combine ontologies, while taking into account the semantic dependencies given by the alignments. In
the following example the ontology Space is defined as a combination of three different ontologies (BFO, GFO, DolceLite)
along three alignments.

ontology Space =
combine BFO2GFO, DolceLite2GFO, DolceLite2BFO

7.3. Use Case Onto-3: Module Extraction From Large Ontologies

Especially in the biomedical domain, ontologies tend to become very large (e.g., SNOMED CT, FMA) with over 100000
concepts and relationships. Yet, none of these ontologies covers all aspects of a domain, and frequently provide coverage
at various levels of specificity, with excessive detail in some areas that may not be required for all usage scenarios. Often,
for a given knowledge representation problem in industry, only relevant knowledge from two such large reference ontologies
needs to be integrated, so a comprehensive integration would be both unfeasible and unwieldy. Hence, parts (modules)
of these ontologies are obtained by selecting the concepts and relationships (roles) relevant for the intended application.
An integrated version will then be based on these excerpts from the original ontologies (i.e., modules). For example, the
Juvenile Rheumatoid Arthritis ontology JRAO has been created using modules from the NCI thesaurus and GALEN medical
ontology. (See Figure DOL supports the description of such subsets (modules) of ontologies, as well as their alignment
and integration.

GALEN

Figure 7.1.: JRAO — Example for Module Extraction

$prefix ( lang: <http://purl.net/DOL/languages/> )%
library GalenModule

language lang:OWL

ontology myGalen =
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http://purl.bioontology.org/ontology/GALEN extract Drugs, Joints, Bodyparts
end

module myGalenIsAModule : myGalen of http://purl.bioontology.org/ontology/GALEN
for Drugs, Joints, Bodyparts
end

7.4. Use Case Onto-4: Interoperability Between Closed-World Data and
Open-World Metadata

Data collection has become easier and much more widespread over the years. This data has to be assigned a meaning
somehow, which occurs traditionally in the form of metadata annotations. For instance, consider geographical datasets
derived from satellite data and raw sensor readings. Current implementations in, e.g., ecological economics [6] require manual
annotation of datasets with the information relevant for their processes. While there have been attempts to standardize
such information [I5], metadata for datasets of simulation results are more difficult to standardize. Moreover, it is resource-
consuming to link the data to the metadata, to ensure the metadata itself is of good quality and consistent, and to actually
exploit the metadata when querying the data for data analysis.

The data is usually represented in a database or RDF triple store, which work with a closed world assumption on the
dataset, and are not expressive enough to incorporate the metadata ‘background knowledge’, such as the conditions for
validity of the physical laws in the MDE model of the object of observation. These metadata require a more expressive
language, such as OWL or Common Logic, which operate under an open-world semantics. However, it is unfeasible to
translate the whole large dataset into OWL or first-order logic. To ‘meet in the middle’, it is possible to declare bridge rules
(i.e., a mapping layer) that can link the metadata to the data. This approach can be used for intelligent data analysis that
combines the data and metadata through querying the system. It enables the analysis of the data on the conceptual layer,
instead of users having to learn the SQL/SPARQL query languages and how the data is stored. There are various tools and
theories to realize this, which is collectively called Ontology-Based Data Access/Management, see also [§].

The languages for representing the metadata or ontology, for representing the bridge rules or mapping assertions, and for
representing the data are different yet they need to be orchestrated and handled smoothly in the system, be this for data
analytics for large enterprises, for formulating policies, or in silico biology in the sciences.

DOL provides the framework for expressing such bridge rules in a systematic way, maintaining these, and building tools
for them.

7.5. Use Case Onto-5: Verification of Rules Translating Dublin Core Into PROV

The Dublin Core Metadata terms, which have been formalized as an RDF Schema vocabulary, developed initially by the
digital library community, are less comprehensive but more widely used than PROV (cf. Use Case Onto-1). The rules for
translating Dublin Core to the OWL subset of PROV (and, with restrictions, vice versa) are not known to yield valid instances
of the PROV data model, i.e. they are not known to yield OWL ontologies consistent with respect to the OWL axioms
that capture part of the PROV data model. This may disrupt systems that would like to reason about the provenance
of an entity, and thus the assessment of the entity’s quality, reliability or trustworthiness. The Dublin Core to PROV
ontology translationﬂ is expressed partly by a symbol mapping and partly by FOL rules. These FOL rules are implemented
by CONSTRUCT patterns in the SPARQL RDF query languag‘eﬂ SPARQL has a formal specification of the evaluation
semantics of its algebraic expressions, which is different from the model-theoretic semantics of the OWL and RDF Schema
languages; nevertheless SPARQL CONSTRUCT is a popular and immediately executable syntax for expressing translation
rules between ontologies in RDF-based languages in a subset of FOL. DOL not only supports the reuse of the existing Dublin
Core RDF Schema and PROV OWL ontologies as modules of a distributed ontology (= OMS network), but it is also able
to support the description of the FOL translation rules in a sufficiently expressive ontology language, e.g. Common Logic,
and thus enable formal verification of the translation from Dublin Core to PROV.

7.6. Use Case Spec-1: Modularity of Specifications

Often specifications become so large that it is necessary to structure them in a modular way, for human readability and
maintainability, and for more efficient tool support. The lack of a standard for such modular structuring hinders interop-
erability among different development efforts and the reuse of specifications. DOL provides a notion of structured modular
specification that is equally applicable to all DOL-conforming logical languages.

Shttp://www.w3.org/TR/2013/NOTE-prov-dc-20130430/
SE.g., http://www.w3.org/TR/2013/NOTE-prov-dc-20130430/#dct-creator
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Structuring pays off even for small specifications. For example, it makes structuring a simple specification of sorting lists
in the following way enhances both readability and potential for re-use of specifications:

sprefix( lang: <http://purl.net/DOL/languages/> )%
library Sorting

%% refinement from abstract sorting to insert sort
language lang:CASL

$right_assoc ___

spec TotalOrder =
sort Elem

pred __<=__ : Elem x Elem
forall x,y,z : Elem
x <= x % (reflexive) %

o

transitive) %
antisymmetric)$%

x <=z if x <=y /\ y <= z
x =y if x <=y /\ y <= x
X

o

(
(
(
(

. <=y \/ y <= x % (dichotomous) %
end
spec Nat =

free type Nat ::= 0 | suc(Nat)
end

spec List =

Nat
then
sort Elem
free type List ::= [] | __::__(Elem; List)
op count : Elem % List —-> Nat
forall x,y : Elem; L : List
count (x,[]) = 0
count (x,x :: L) = suc(count(x,L))
count (x,y :: L) = count(x,L) if not x=y
end

spec Sorting =
TotalOrder and List
then
preds is_ordered : List;
permutation : List % List
vars x,y:Elem; L,L1,L2:List
is_ordered([])
is_ordered(x::[])
is_ordered(x::y::L) <=> x<=y /\ is_ordered(y::L)
permutation(Ll,L2) <=> (forall x:Elem . count(x,Ll) = count(x,L2))
then
op sorter : List->List
var L:List
is_ordered (sorter (L))
permutation (L, sorter (L))
hide is_ordered, permutation
end

In the last step, the structuring operation of hiding is used to restrict the specification to an export interface: predicates
is_ordered and permutation are hidden, because they are only auxiliary and need not be implemented.

7.7. Use Case Spec-2: Specification Refinements

Formal software and hardware development methods are often used to ensure the correct function of systems which have
safety-critical requirements or which may not be easily accessible for repair or replacement. Examples of such requirements
can be found in safety-critical areas such as medical systems, or in the automotive, avionics and aerospace industries, as
well as in components used by those industries such as in microprocessor design.

Typically, a requirement specification is refined into a design specification and then an implementation, often involving
several intermediate steps (see, e.g. the V-model [?], although this does not require formal specification). There are numerous
specification formalisms in use, including the OMG’s SysML language; moreover, often during development, the formalism
needs to be changed (e.g. from a specification to a programming language, or from a temporal logic to a state machine). For
each of these formalisms, notions of refinement have been defined and implemented. However, the lack of a standardized,
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logically sound language and methodology for such refinement hinders interoperability among different development efforts
and the reuse of refinements. DOL provides the capability to represent refinement that is equally applicable to all DOL-
conforming logical languages, and that covers at least the most relevant of the industrial use cases of specification refinement.

A simple example is the refinement of the (purely declarative) sorting specification from use case in section into a
specification of a particular sorting algorithm (for simplicity, insert sort is used for demonstration):

spec InsertSort =
TotalOrder and List

then
ops insert : ElemxList -> List;
insert_sort : List->List
vars x,y:Elem; L:List
insert (x,[]) = x::[]
insert (x,y::L) = x::insert(y,L) when x<=y else y::insert (x,L)
insert_sort ([]) = []
insert_sort(x::L) = insert (x,insert_sort (L))
hide insert
end

refinement InsertSortCorrectness =
Sorting refined via sorter |-> insert_sort to InsertSort
end

Note that hiding is essential here to make the signatures of both specifications compatible. If the predicates is_ordered
and permutation had not been hidden in the Sorting specification, a refinement would not have been possible, since
InsertSort does not implement these predicates (and it would be rather artificial to add an implementation for them).

Refinements can be composed. A simple example below illustrates this by expressing that natural numbers with addition
form a monoid, and that natural numbers can be efficiently represented for implementation as lists of binary digits, together
with several equivalent ways of composing these refinements.

spec Monoid =
sort Elem
ops 0 : Elem;
_+__ : Elem % Elem -> Elem, assoc, unit 0
end

spec NatWithSuc = $mono

free type Nat ::= 0 | suc(Nat)
op __+_ _ : Nat » Nat -> Nat, unit 0
forall x , y : Nat . x + suc(y) = suc(x + y)
op 1l:Nat = suc(0)
end
spec Nat =
NatWithSuc hide suc
end

spec NatBin =

generated type Bin ::= 0 | 1 | __0(Bin) | __1(Bin)
ops __ +___ , __++___ : Bin x Bin -> Bin
forall x, y : Bin
0o0=0 . 01=1
not (0 = 1) x 0 y 0 => x =y not (x 0 =y 1) x1l=y1l=>x=y
0+0=0 . 0++0=1
X +y 0= (x+vy) O x 0 ++ v O (x +vy) 1
x0+y1l=(x+y)l1l .o x 0 ++ vy 1= (x++vy) O
x1+y 0= (x+y)l x 1 ++ vy 0= (x++y) 0
.o x 1l +y1l=(x++vy) 0 x 1 ++y 1= (x++vy) 1
end

refinement R2 =
Nat refined wvia Nat |-> Bin to NatBin
end

refinement R3 =
Monoid refined via Elem |-> Nat to
Nat refined wvia Nat |-> Bin to NatBin

end

refinement R3’ =
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Monoid refined wvia Elem |-> Nat to R2
end

refinement R3’’ =
Monoid refined via Elem |-> Nat to Nat then R2
end

refinement R3’’’ = R1 then R2

7.8. Use Case Model-1: Consistency Among UML Diagrams of Different Types

A typical UML model involves diagrams of different types. Such UML models may have intrinsic errors because diagrams
of different types may specify conflicting requirements. Typical questions that arise in this context are, e.g.,

e whether the multiplicities in a class diagram are consistent with each other;
e whether the attributes and operations in a state machine are available in a class diagram;

e whether the sequential composition of actions in an interaction diagram is justified by an accompanying OCL specifi-
cation;

e whether cooperating state machines comply with pre-/post-conditions and invariants;

o whether the behavior prescribed in an interaction diagram is realizable by several state machines cooperating according
to a composite structure diagram.

Such questions are currently hard to answer in a systematic manner. One method to answer these questions and find
such errors is a check for semantic consistency. Under some restrictions, the proof of semantic consistency can be (at least
partially) performed using model-checking tools like Hugo/RT [41]. Once a formal semantics for the different diagram types
has been chosen (see, e.g. [40]), it is possible to use DOL to specify in which sense the diagrams need to be consistent, and
check this by suitable tools.

7.8.1. The ATM Example

The ATM example, which illustrates model-driven development using UML, is taken from [40]. The example involves the
design of a traditional automatic teller machine (ATM) connected to a bank. For simplicity, the example focuses on the
ATM’s processing of card and PIN entry actions. After entering the card, one has three trials for entering the correct PIN
(which is checked by the bank). After three unsuccessful trials the card is kept.

Figure shows a possible interaction between an atm and a bank object, which consists of four messages: the atm
requests the bank to verify if a card and PIN number combination is valid, in the first case the bank requests to reenter the
PIN, in the second case the verification is successful. This interaction presumes that the system has an atm and a bank as
objects. This can, e.g., be ensured by a composite structure diagram, see Fig.|7.2(b)| which — among other things — specifies
the objects in the initial system state. Furthermore, it specifies that the communication between atm and bank goes through
the two ports bankCom and atmCom linked by a connector. The communication protocol on this connector is captured
with a protocol state machine, see Fig. The protocol state machine fixes in which order the messages verify, verified,
reenterPIN, and marklnvalid between atm and bank may occur. Figure provides structural information in form of an
interface specifying what is provided at the userCom port of the atm instance. An interface is a set of operations that other
MDE model elements have to implement. In our case, the interface is described in a class diagram. Here, the operation
keepCard is enriched with the OCL constraint trialsNum >= 3, which refines its semantics: keepCard can only be invoked if the
OCL constraints holds.

Finally, the dynamic behavior of the atm object is specified by the behavioral state machine shown in Fig. The
machine consists of five states including Idle, CardEntered, etc. Beginning in the initial Idle state, the user can trigger a state
change by entering the card. This has the effect that the parameter ¢ from the card event is assigned to the cardld in the
atm object (parameter names are not shown on triggers). Entering a PIN triggers another transition to PINEntered. Then
the ATM requests verification from the bank using its bankCom port. The transition to Verifying uses a completion event:
No explicit trigger is declared and the machine autonomously creates such an event whenever a state is completed, i.e., all
internal activities of the state are finished (in our example there are no such activities). If the interaction with the bank
results in reenterPIN, and the guard trialsNum < 3 is true, the user can again enter a PIN.

The ATM example in Fig. [7.2] consists of five different UML models, which naturally form a network. Coherence of this
network is expressed as its consistency. It is assumed that XMI representations of the relevant UML models have been
stored at http://www.example.org/uml/| that is under URL http://www.example.org/uml/xxx.xmi, where xxx
is determined as follows:
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sd ATM2Bank Scenario )
atm : ATM | | bank : Bank
L overify(17, 4711) |
w cmp System
L verify(17, 4242)
> userCom | «component» atmCom _| «component»
! verified() ! [ ] atm:ATM [ | [ ] bank : Bank
k ' bankCom
(a) Interaction (b) Composite structure
«component»
«interface» ATM
UserOut N |
trialsNum : Integer
stm ATM2Bank { protocol } J card(in ¢ : Integer) cardld : Integer
marklnvalid / PIN(in p : Integer) pin : Integer
ity / userCom : UserCom
verly - bankCom : BankCom
- «interface»
Verifying Userln it
77777 o «precondition»
keepCard() .
reenterPIN / ejectCard() {{OCL } trialsNum >= 3}
(¢) Protocol state machine (d) Interfaces and components
stm ATM Behaviour )
userCom.card(c) / userCom.PIN(p) /
*—>| Idle CardEntered - PINEntered
cardld = ¢ pin=p
[trialsNum < 3] / bankCom.verify(cardld, pin)
trialsNum++
[trialsNum >= 3] bankCom.reenterPIN / Verifyin ]
userCom.keepCard(); !y N
bankCom.markinvalid(cardld);
trialsNum = 0 bankCom.verified /
/ userCom.ejectCard(); trialsNum =0 (
d 0 Verified
(e) State machine
Figure 7.2.: ATM example
Figure xxx | diagram type

Fig.[7.2(a)| | sd sequence diagram

(
Fig.[7.2(b)| | cmp | composite structure diagram
Fig.[7.2(c)| | psm | protocol state machine
(
(

Fig.[7.2(d)| | cd class diagram
Fig.[7.2(e)| | stm | state machine

sprefix( : <http://www.example.org/uml/>
uml: <http://www.uml.org/spec/UML/>
log: <http://purl.net/DOL/logics/> )%

%% descriptions of logics
library ATM

view cd2stm = cd to atm hide along stm2cd} end
view cd2psm = cd to psm hide along psm2cd} end
network ATM_network = %consistent
cd, stm, psm, cmp,
cd2stm, cd2psm, abstract_to_concrete_atm
entailment atm in ATM_network entails sd
network Some_refined_ ATM network =
refinement r = ATM_network refined to Some_refined_ATM_network
entailment e = Some_refined_ATM_network entails ATM_network

Here, abstract_to_concrete_atm is defined in the next section, and stm2cd and psm2cd are suitable logic projections
extracting the classes, attributes and operations from a (protocol) state machine, delivering a class diagram.
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7.9. Use Case Model-2: Refinements Between UML Diagrams of Different Types,
and Their Reuse

A problem is a lack of reusability of refinements: Consider a controller for an elevator, which is specified with a UML
protocol state machine, enriched with UML sequence diagrams and OCL constraints. Assume further that this UML
model is not directly implemented, but first refined to a UML behavior state machine (which then can be automatically or
semi-automatically transformed into some implementation using standard UML tools). However, there is no standardized
language to express, document and maintain the refinement relation itself (UML only allows very simple refinements, namely
between state machines). This hinders both the reuse of such refinements in different contexts, as well as the interoperability
of tools proving such refinements to be correct. DOL addresses these problems by providing a standardized notation with
formal semantics for such refinements. Refinements expressed in this language could, e.g., be parameterized and reused in
different contexts.

This can be illustrated based on the state machine of the atm, shown in Fig.|7.2(e)l which is a refinement of the protocol
state machine in Fig. This can be stated as follows in DOL. E]

refinement abstract_to_concrete_atm =
psm refined wvia translation psm2Zatm to
{ atm with Idle |-> Idle, CardEntered |-> Idle,
PINEntered |-> Idle, Verified |-> Idle,
Verifying |-> Verifying
hide card, PIN }
end

The refinement uses an abstraction of the atm, expressed by the translation via symbol map Idle |-> Idle, CardEntered
|-> Idle, PINEntered |-> Idle, Verified |-> Idle, Verifying |-> Verifying, resulting in a two-state
machine. Moreover, some detail of the atm is hidden using hide. Then, the protocol state machine can be refined to the
thus abstracted atm.

7.10. Use Case Model-3: Coherent Semantics for Multi-Language Models

Often a single problem area within a given domain must be represented using several formalisms, e.g., because of user
community requirements, expressiveness or tool support and usage. Typically the different representations are written by
different people using formalisms that are based on different logics. Thus, it is a challenge to maintain consistency across the
different representations. The need for the use of multiple OMS languages, even within the OMG community, is also reflected
by the OMG Ontology Definition Metamodel (ODM), which provides a number of syntactic transformations between such
languages. One example is the OMG Date-Time Vocabulary (DTV). DTV has been formulated in different languages, each
of which addresses different audiences:

e SBVR: business users
e UML (class diagrams and OCL): software implementors
e OWL: ontology developers and users
e Common Logic: (foundational) ontology developers and users
With DOL, one can, e.g.,
e formally relate the different formalizations used for DTV, relate the different formalizations using translations,
e check consistency across the different formalizations (using suitable tools),
e extract sub-modules covering specific aspects, and

e specify the OWL version to be an approximation of the Common Logic version (using a heterogeneous interpretation

of OMS).

Note that the last point does not specify what information is lost in the approximation. Indeed, DOL provides the means
to specify requirements on the approximation, e.g., that it maximally preserves the information.

Coming to a DOL example, a UML model like the ATM model developed in section [7:8.1] typically is part of an application
context that also contains some common terminology. This terminology often is specified by an ontology, and then it is
desirable to relate the model to the ontology. Consider the following financial ontology fragment:

ontology myTaxonomy =
ObjectProperty: owns
Characteristics: Irreflexive, Asymmetric

7 It is assumed that XMI representations of the relevant UML models have been stored at http://www.example.org/uml/, e.g.
http://www.example.org/uml/atm.xmi
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Class: FinancialIntermediary
SubClassOf: CorporatePerson
Class: CorporatePerson
SubClassOf: ImmaterialEntity
Class: ImmaterialEntity
DisjointWith: MaterialEntity
SubClassOf: has_part only ImmaterialEntity
Class: Livestock
SubClassOf: MaterialEntity

end
To relate this ontology with the ATM model, various aspects need to be taken care of:
e Translating into shared language (in this case, Common Logic)
e Unifying terminology (Bank vs. Financiallntermediary)

e Connecting related concepts (bank.owns.ATM vs. owns)

e Removing irrelevant parts (livestock)
model xmiStateModel = <https://ontohub.org/ATM/state.xmi>

model clStateModel = xmiStateModel with
translation UMLState2CL

model xmiClassModel = <https://ontohub.org/ATM/class.xmi>

model clClassModel = xmiClassModel with
translation UMLClass2CL
Bank |-> FinancialIntermediary

ontology BigTaxonomy = <https://ontohub.org/ATM/mytaxonmy.owl>

ontology NolivestockTaxonomy = BigTaxonomy reject
Class: Livestock
end

ontology ExtendedTaxonomy = NoLivestockTaxonomy then
ObjectProperty Financiallntermediary.owns.ATM
SubPropertyOf: owns
Domain: FinancialIntermediary
Range: ATM
end

ontology clTaxonomy = ExtendedTaxonomy with
translation OWL22CommonLogic

oms JointModel = clStateModel and
clClassModel and
clTaxonomy

end

7.11. Conclusion

In this section, several use cases have been introduced. They illustrate many aspects of DOL and its usefulness in many
situations in which different OMS artifacts might be leveraged and augmented to produce broader or more tractable MDE
models, ontologies, and specifications.

DOL has been designed to support of a wide range of formalisms and provides the ability to specify the basis for formal
interoperability even among heterogeneous OMS and OMS networks. DOL enables the solutions of the problems described
in the use cases above. It also enables the development of DOL documents, tools and workflows that allow a better exchange
and reuse of OMS. Eventually, this will also lead to better, easier developed and maintained systems based on these OMS.
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The next sections present the metalanguage DOL; in particular, the syntax and the model-theoretic semantics. Further,
various features of DOL will be discussed, which are based on best practices of modularity across the three areas of ontology
design, formal specification, and model-driven development.
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8. Design Overview
(Informative)

The purpose of this clause is to briefly describe the overall guiding principles and constraints of DOL’s syntax and
semantics. It provides an overview of the most important and innovative language constructs of DOL. Details can be found
in clause

8.1. DOL in a Nutshell

As the usage scenarios in clause [7|illustrate, the use of multiple OMS may lead to lack of interoperability. The goal of DOL
is to enable users to overcome these interoperability issues by providing a language for representing structured OMS and
the relations between OMS as part of an OMS network in a semantically well-defined way. One particular challenge that
needs to be addressed is that OMS are written in a wide variety of OMS languages, which differ in style, expressivity and
logical properties. To address this diversity this specification does not propose a “universal” language that is intended to
subsume all the others. Quite the opposite, the authors of this specification embrace the pluralism of OMS languages, and
the purpose of DOL is to provide means (on a sound and formal semantic basis) to compare and integrate OMS written in
different formalisms. Thus, DOL is not ‘yet-another-modeling language’, but a meta-language that is used on top of existing
OMS languages.
The major functions of DOL are the following;:

e DOL allows the use of OMS in other OMS languages (e.g., UML class diagrams, CasL, OWL, Common Logic) without
requiring any changes. These are called native OMS. A native OMS is serialized in a native document.

e DOL provides for defining new, structured OMS based on existing OMSE DOL provides a number of operations for
this purpose; e.g., it is possible to define a structured OMS C as the union of an OWL ontology A and a Common
Logic ontology B.

e DOL provides for defining connections between two OMS by using OMS mappings. DOL provides a variety of mappings;
e.g., one can align terminology between different OMS or specify that some OMS is an extension of another. A set of
OMS and OMS mappings may form together an OMS network.

e Native OMS inherit their semantics from the underlying OMS languages. The DOL operations for defining structured
OMS, OMS mappings, and OMS networks have a declarative model-theoretic semantics, which is defined in clause[I0]

Each of these functions corresponds to a syntactic category in DOL: native OMS, structured OMS, OMS mappings, and
OMS networks. They (together with imports) form the items in a DOL library, and are, in this sense, the most important
metaclasses of DOL.

8.2. Features of DOL

DOL is a language enabling OMS interoperability. DOL is
free DOL is freely available for unrestricted use.

generally applicable DOL is neither restricted to OMS in a specific domain, nor to foundational OMS, nor to OMS represented
in a specific OMS language, nor to OMS stored in any specific repositories.

open DOL supports mapping, integrating, and annotating OMS across arbitrary internet locations. It makes use of existing
open standards wherever suitable. The criteria for extending DOL (see next item) are transparent and explicit.

extensible DOL provides a framework into which any existing, and, desirably, any future OMS language can be plugged.

DOL is applicable to any OMS language that has a formal, logic-based semantics or a semantics defined by translation to
another OMS language with such a formal semantics. The annotation framework of DOL is additionally applicable to the
non-logical constructs of such languages. This OMG Specification specifies formal criteria for establishing the conformance
of an OMS language with DOL. The annex establishes the conformance of a number of relevant OMS languages with DOL;
a registry shall offer the possibility to add further ( including non-standardized) languages.

INative OMS can also use the structuring constructs from their OMS language. However, these structuring constructs are often quite
limited, and moreover, they differ from OMS language to OMS language.
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DOL provides syntactic constructs for structuring OMS regardless of the logic their sentences are formalized in. Since
DOL is a meta-language, it inherits the logical language aspects of conforming OMS languages. It is possible to literally
include sentences expressed in such OMS languages in a DOL OMS.

DOL provides an initial vocabulary for expressing relations in correspondences (as part of alignments between OMS).
Additionally, it provides a means of reusing relation types defined externally of this OMG Specification. DOL does not provide
an annotation vocabulary, i.e. it neither provides annotation properties nor datatypes to be used with literal annotation
objects.

8.3. OMS Languages

OMS languages are declarative languages for making ontological distinctions formally precise, for modeling a domain in an
unambiguous way, or for expressing algebraic specifications of software. OMS languages are distinguished by the following
features:

Logic Most commonly, OMS languages are based on a description logic or some other subset of first-order logic, but in some
cases, higher-order, modal, paraconsistent and other logics are used.

Modularity A means of structuring an OMS into reusable parts, reusing parts of other OMS, mapping imported symbols to
those in the importing OMS, and asserting additional properties about imported symbols.

Annotation A means of enabling the attachment of human-readable descriptions to OMS symbols, addressing knowledge
engineers and service developers, but also end users of OMS-based services.

Whereas the first feature determines the expressivity of the language and the possibilities for automated reasoning (decid-
ability, tractability, etc.), the latter two facilitate OMS engineering as well as the engineering of OMS-based software.

Acknowledging the wide tool support that conforming established languages such as OWL, RDF, Common Logic, UML,
MOF, or CASL enjoy, existing OMS in these (and any other) conforming languages remain as they are within the DOL
framework. DOL enhances their modularity and annotation facilities to a superset of the modularity and annotation facilities
they provide themselves. Using DOL’s modularity constructs to make statements about modules of existing OMS works
by making relevant parts of these OMS; e.g., sets of axioms, identifiable, and then referring to these identifiers from DOL
statements. DOL’s modularity constructs are semantically well-founded within a library of formal relationships between the
logics underlying the different supported OMS languages. General annotation of OMS and their parts works in a similar
way. Here, DOL does not provide its own annotation constructs, but once again DOL’s general mechanism of making things
of interest identifiable can be employed. Once these things have been identified, the actual annotations can be added using
external mechanisms such as RDF.

8.4. DOL in the Metamodeling Hierarchy

DOL uses the metamodeling hierarchy known from model-driven engineering:

specified in
M4 Set & category theory
conforms to conforms to T
specified in

M3 MOF onforms to EBNF Institutions

conforms toT >< TCOHfVY

conforms to
conforms to

M2 DOL metamodel OMS language metamodel

conforms toT conforms toT

contains .

M1 DOL document > specific OMS

The syntax of a DOL conformant language can be written in MOF or EBNF, which are self-describing. The semantics of
a DOL conformant language is its presentation as an institution. Institutions themselves are specified in the language of set
theory and category theory.

In the future, it may be possible to specify the semantics of a DOL conformant language using a semantics-based logical
framework such as LF or MMT. Since LF can be specified in LF itself, this would close the loop already at M3 also for the
semantics.
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8.5. Semantic Foundations of DOL

A large variety of OMS languages in use can be captured at an abstract level using the concept of institutions [24]. This
allows the development of DOL independently of the particularities of a logical system and to use the notions of institution
and logical language interchangeably. The main idea is to collect the non-logical symbols of the language in signatures and
to assign to each signature the set of sentences that can be formed with its symbols. For each signature, DOL provides
means for extracting the symbols it consists of, together with their kind. Institutions also provide a model theory, which
introduces semantics for the language and gives a satisfaction relation between the models and the sentences of a signature.

It is also possible to complement an institution with a proof theory, introducing a derivability relation between sentences,
formalized as an entailment systern [57]. In particular, this can be done for all logics that have so far been in use in DOL.

Since institutions allow the differences between OMS languages to be elided to common abstractions, the semantics of
basic OMS is presented in a uniform way. The semantics of structured OMS, OMS mappings, OMS networks, and other
DOL expressions is defined using model-theoretic constructions on top of institutions.

8.6. DOL Enables Expression of Logically Heterogeneous OMS and Literal
Reuse of Existing OMS

DOL is a mechanism for expressing logically heterogeneous OMS. It can be used to combine sentences and structured
OMS expressed in different conforming OMS languages and logics into single documents or modules. With DOL, sentences
or structured OMS of previously existing OMS in conforming languages can be reused by literally including them into a
DOL OMS. A minimum of wrapping constructs and other annotations (e.g., for identifying the language of a sentence) are
provided. See the MOF metaclass OMS in clause [9]

A heterogeneous OMS can import several OMS expressed in different conforming logics, for which suitable translations
have been defined in the logic graph provided in annex[H|or in an extension to it that has been provided when establishing the
conformance of some other logic with DOL. Determining the semantics of the heterogeneous OMS requires a translation into
a common target language to be applied (cf. clause . This translation is determined via a lookup in the transitive closure
of the logic graph. Depending on the reasoners available in the given application setting, it can, however, be necessary to
employ a different translation. Authors can express which one to employ. However, DOL provides default translations, which
are applied unless the user specifies a translation that deviates from the default. Both default and non-default translations
may be combined to multi-step translations.

8.7. DOL Includes Provisions for Expressing Mappings Between OMS

DOL provides a syntax for expressing mappings between OMS. One use case illustrating both is sketched in Figure [8.1
OMS mappings supported by DOL include:

e imports (particularly including imports that lead to conservative extensions), see the MOF metaclasses OMSRef and
ExtensionOMS in clause O

e interpretations (both between OMS and OMS networks), see the MOF metaclass InterpretationDefinition in
clause [9

e alignments between OMS, see the MOF metaclass AlignmentDefinition in clause[9]
e mappings between OMS and their modules, see the MOF metaclass ModuleRelDefinition in clause[]

DOL uses symbol maps to express signature translations in such OMS mappings; see the MOF metaclass SymbolMap in
clause [0

DOL need not be able to fully represent logical translations but is capable of referring to them.

DOL can also be used to combine or merge OMS along such OMS mappings, see the rule for combination for the MOF
metaclass OMS in clause [0

8.8. DOL Provides a Mechanism for Rich Annotation and Documentation of OMS

DOL provides a mechanism for identifying anything of relevance in OMS by assigning an IRI to it. With RDF there is a
standard mechanism for annotating things identified by IRIs. Thus, DOL supports annotations in the full generality specified
in clause [4.11
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Figure 8.1.: Mapping between two OMS formulated in different OMS languages
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9. DOL Syntax

This clause specifies the DOL abstract syntax as a MOF metamodel. In annex[J] the same abstract syntax is specified using
EBNF. We further include the DOL concrete syntax, which uses the metaclasses of the abstract syntax as non-terminals of

an EBNF grammar.

At several places, the concrete syntax uses the non-terminal ' end’ to mark the end of a definition or declaration. Tools
may make this ' end’ optional. However, in this standard, the ' end’ is not marked as optional, because it may be needed

to effectively disambiguate heterogeneous texts.

The DOL document types are as follows
MIME type application/dol+test

Filename extension .dol

9.1. MOF Metaclasses

DOL provides MOF metaclasses for (among others):

e OMS (which can be native OMS in some OMS language, or unions, translations, closures, combinations, approxima-

tions of OMS, among others)
e OMS mappings
o OMS networks

e DOL libraries (items in these are: definitions of OMS, OMS mappings, and OMS networks, as well as qualifications

choosing (1) the logic, (2) the OMS language and/or (3) the serialization)
o identifiers

e annotations

Additionally, the MOF metaclasses of the abstract syntaxes of any conforming OMS languages (cf. clause are subclasses

of the DOL metaclass Nat iveDocument.

i

NativeDocument

zaspectOfz zaspectOfs easpectOfs zaspectOfz zaspectOfz zaspect0fs

|UML::MndeI | |ow|_::wn Ontol | [e nnir"Text| |RDF::Document| |::A5L::L|BR.nR\r| |TPTP::TPTP_ﬁIe|

If a conforming OMS language has a metaclass for basic OMS, this is a subclass of the metaclass BasicOMS.

a

BasicOMS

zaspectOfz zaspectOfs zaspectOfz zaspectOfs zaspectOfs zaspectOfs

|UML::PackageahleElement| |0WL::0WLUniuerse | |CommonLogic::Sentence | |RDF::TripIe ‘ |CASL::B.RSIC-SPEC ‘ |TPTP::annotatedjormula

9.2. Documents

9.2.1. Abstract Syntax

A document (Document) can be a

e a DOL library, or

e a NativeDocument, which is the verbatim inclusion of an OMS written in an OMS language that conforms with

DOL; cf. [2.1).
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A DOL library

consists of a collection of (named) OMS, OMS networks, and mappings between these. More specifically, a DOL library
consists of a name, followed by a list of LibraryItems. A LibraryItem is either a Definition, an import of another
DOL library (LibraryImport), or a Qualification selecting a specific OMS language, logic and/or syntax that is used
to interpret the subsequent LibraryItems. A LibraryImport leads to the inclusion of all LibraryItems of the imported
DOL library into the importing one. A Definition assigns an IRI to an OMS (OMSDefinition), to a mapping between
OMS (MappingDefinition), or an OMS network (NetworkDefinition). Moreover, annex [K]informatively introduces

QueryRelatedDefinition.

At the beginning of a DOL library, one can declare a PrefixMap for abbreviating long IRIs using CURIESs; see clause[0.6]

for further details.

NativeDocument

+dolLibrary [
0.+ |

DOLLibrary

+dolLibrary |0.*

{ordered, nonunigue}

+libraryttem

Librarykem

+dolLibrary

.
+ibrarylmport (0..* o

+gualification

|+doILibrary +prefixMap Pr
0. D M
+prefixhap

+prefixBinding J0..*

PrefixBinding

+prefix : String [1]

Qualification

Fuy

| NetworkDefinition || OMSDefinition | |

Qualification |

+networkDefintion |0..* +omsDefintion |0..*

HlanguageQuali

QueryRelatedDefinition

SyntaxQualification |

+syntaxGualification |0..*

| LogicQualification

+logicQualification

kmngef

1

+ibraryMame 11 +ibraryMame [1 +networkMame 11 +omsMame [1 +languageRef [1 +syntaxRef |1
| RI
9.2.2. Concrete Syntax
Documents
Document ::= DOLLibrary | NativeDocument
DOLLibrary = [PrefixMap] ’library’ LibraryName
Qualification LibraryItemx

NativeDocument = <language and serialization specific >
LibraryItem ::= LibraryImport | Definition | Qualification
Definition = OMSDefinition

| NetworkDefinition

| MappingDefinition
LibraryImport := ’import’ LibraryName
Qualification ::= LanguageQualification

| LogicQualification

| SyntaxQualification
LanguageQualification ::= ’language’ LanguageRef
LogicQualification ::= "logic’ LogicRef
SyntaxQualification ::= ’serialization’ SyntaxRef
LibraryName = IRI
LanguageRef ::= IRI
LogicRef c:= IRI
SyntaxRef 1= IRI
PrefixMap 1= "%prefix(’ PrefixBindingx ')%’
PrefixBinding ::= BoundPrefix IRIBoundToPrefix [Separators]
BoundPrefix ::= ':’ | Prefix <see definition in clause >
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9. DOL Syntax

IRIBoundToPrefix ::= "<’ FullIRI ’'>’

Separators ::= ’separators’ SeparatorString SeparatorString
SeparatorString ::= SeparatorChar SeparatorCharx

SeparatorChar ::= ipchar | gen-delims - ’#’<as defined in IETF/RFC 3987>

Note that the empty prefix (called “no prefix” in W3C/TR REC-rdfa-core:2013, Section 6) is denoted by a colon inside
the prefix map, but it is omitted in CURIEs. This is the style of the OWL Manchester syntax [28] but differs from the
RDFa Core 1.1 syntax.

9.3. OMS Networks

9.3.1. Abstract Syntax

Inside a DOL library, with a NetworkDefinition, one can define OMS networks (also called distributed OMS). OMS
networks are typically used for complex viewpoint specifications; they also can be used in combinations (see clause [9.4
below). A NetworkDefinition names an OMS network consisting of NetworkElements. These can be ElementRefs,
i.e. IRIs that name OMS, OMS mappings, or previously-defined OMS networks. ElementRefs that are OMS can be prefixed
with an Id; this is then used for disambugation in a combination. An optional ConservativityStrength specifies e.g.
consistency of the network (analogously to OMSDefinitions, see clause below for details).

An OMS network by default also includes all inclusions (between the extended and the extending OMS of an ExtensionOMS)
between the involved OMS—unless these are explicitly excluded. The latter can be achieved using ExcludingElements.
They consist of ElementRefs naming OMS or OMS mappings, and of PathReferences. A PathReference refers to an
unnamed OMS mapping (e.g. one generated by an Extension) by specifying its source and target OMS.

HNetworkDefinition
+conservativityStrength : ConservativityStrength [0..1]
+networkDefinition (0.* +networkDefinition (0..*
+network 11
| Hetwork | «enumerations
c ivityS
+network |0.* +netwaork (0..* o = At
rexcludedElement |0, consequence-conservative
model-conservative
| ExcludedElemeant | not-conseguence-conservative
not-model-conservative
implied
manomerphic
weak-defintional
defintional
+networkElement ]0 »
HNetworkElement
+el : String [0..1]
| PathReference |
+networkElement |0..*
+pathReference (0.* +pathReference (0.*
+source |1 +target |1 +elementRef [1
| ElementRef
+elemertRef |0.*
+ri 11
R prnetworkName
I
9.3.2. Concrete Syntax
NetworkDefinition ::= "network’ NetworkName ’=’'
[ConservativityStrength] Network
NetworkName = IRI
Network ::= NetworkElements [ExcludedElements]
NetworkElements ::= NetworkElement ' ,’ NetworkElement =
NetworkElement c:= [Id ":'] ElementRef
ExcludedElements ::= ’"excluding’ ExcludedElement ' ,’ ExcludedElement =
ExcludedElement ::= PathReference | ElementRef
PathReference ::= IRI "—->" IRI
ElementRef 1= IRI
Id ::= Letter LetterOrDigitx
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9.4. OMS
9.4.1. Abstract Syntax

DOL provides a rich structuring language for OMS, providing extension, translation, unions of OMS and many more. For
each of these alternatives, a subclass is introduced. An OMS can be

e a TranslationOMS involving both an OMS (to be translated), and a specification of the translation, which is covered
by the class OMSTranslation;

e a UnionsOMS, uniting two given OMS;
e a ClosureOMS, applying a closure operator (given by a Closure) to an OMS;

e an ExtensionOMS, extending a given OMS with another OMS (given by the Extension). The major difference
between a union and extension is that the members of the unions need to be self-contained OMS, while the extensions
may reuse the signature of the extended OMS;

e an ExtendingOMS, which is a very simple form of OMS, namely a basic OMS or an OMS reference (see below);
e a FilteringOMS, applying a filtering operator (given by a Filtering) to an OMS;
e an ApproximationOMS, applying an approximation operator (given by an Approximation) to an OMS;

e a CombinationOMS, giving a combination of (the OMS contained in) an OMS network (technically, this is a colimit,
see [81]);

e a ReductionOMS, applying a reduction (given by an Reduction) to an OMS;
e a ExtractionOMS, applying a module extraction operator (given by an Extraction) to an OMS;
e a QualifiedOMS, which is an OMS qualified with the OMS language that is used to express it.

Moreover, annex [K] informatively introduces Applications, which apply a substition to an OMS.

A ConservativityStrength specifies additional relations that may hold between an OMS and its extension (or union
with other OMS), like conservative or definitional extension. The rationale is that the extension should not have impact on
the original OMS that is being extended.

An OMS definition OMSDefinition names an OMS. It can be optionally marked as inconsistent, consistent, monomorphic
or having a unique model using ConservativityStrength. More precisely, ' consequence-conservative’ here re-
quires the OMS to have only tautologies as signature-free logical consequences, while ' notconsequence-conservative’
expresses that this is not the case. ' model-conservative’ requires satisfiability of the OMS, ' not-model-conservative’
its unsatisfiability. ' definitional’ expresses that the OMS has a unique model; this may be interesting for characterizing
OMS (e.g. returned by model finders) that are used to describe single models.
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9. DOL Syntax

ExtendingOMS is a subclass of OMS, containing those OMS that may be used to extend a given OMS within an
ExtensionOMS. An ExtendingOMS can be one of the following:

e a basic OMS BasicOMS written inline, in a conforming serialization of a conforming OMS language (which is defined
outside this standard)ﬂ

e a reference (through an IRI) to an OMS (OMSReference); or

e a RelativeClosureOMS, applying a closure operator to a basic OMS or OMS reference (these two are hence joined
into ClosableOMs). A closure forces the subsequently declared non-logical symbols to be interpreted in a minimal
or maximal way, while the non-logical symbols declared in the local environment are fixed. Variants of closure are
minimization, maximization, freeness (minimizing also data sets and equalities on these, which enables the inductive
definition of relations and datatypes), and cofreeness (enabling the coinductive definition of relations and datatypes).

Using ExtendingOMs, further OMS can be built:

e extensions of an OMS with an Extension, which is an ExtendingOMS optionally named and/or marked as conser-
vative, monomorphic, definitional, weakly definitional or implied (using a ConservativityStrength, see clause
for details),

e closures of an OMS with a Closure. This is similar to a RelativeClosureOMS, but the non-logical symbols to be
minimized/maximized and to be varied are explicitly declared here (while a RelativeClosureOMS takes the local
environment to be fixed, i.e. not varied).

Recall that the local environment is the OMS built from all previously-declared symbols and axioms.

Extending OMS
+extendingOMS
Ilk 1
+relativeClosureOMS +closableOMS
losureOMS - 7 = R
+closureType : ClosureType [1]]|
+extension (0.*

+conservativityStrength : ConservativityStrength [0..1]

+extension (0.*

Closure «enumerations msReference =
OMSReference BasicOMS
+closureType : ClosureType [1] ClosureType 0.+
minimize «enumerations
;?Zé"’nlze +omsReference [0.* ConservativityStrength
g . "
+closure (0. +closure (0. cofree conseguence-conservative

model-conservative
not-consegquence-conservative
not-model-conservative

implied

monomarphic

+circhars 1 i weak-defintional
A Beesloxure definitional
Clrcll'arsJ

+circClosure |0.*

+circClosure |1

+circVars (0.*

. .
+symbol 0. +symbol 1.  +omsRef |1 +importhame 0.1
| bol +symbol i = +extensionhlam:
o.* 1 0.1

@

Furthermore, OMS can be constructed using

e a translation OMSTranslation of an OMS into a different signature or OMS language. The former is done using
a SymbolMap, specifying a map of symbols to symbols. The latter is done using an OMS language translation
OMSLanguageTranslation can be either specified by its name, or be inferred as the default translation to a given
target (the source will be inferred as the OMS language of the current OMS);

e a Reduction of an OMS to a smaller signature and/or less expressive logic (that is, some non-logical symbols and/or
some parts of the model structure are hidden, but the semantic effect of sentences involving these is kept). The
former is done using a SymbolList, which is a list of non-logical symbols that are to be hidden. The latter uses
an OMSLanguageTranslation denoting a logic projection that is used as logic reduction to a less expressive OMS
language.

e an Approximation of an OMS, in a subsignature (InterfaceSignature) or sublogic, with the effect that sentences
not expressible in the subsignature respectively sublogic are replaced with a suitable approximation,

e a Filtering of an OMS, with the effect that some signature symbols and axioms (specified by a BasicOMS) are
removed from the OMS,

'Tn this place, any OMS in a conforming serialization of a conforming OMS language is permitted. However, DOL’s module sublanguage
should be given preference over the module sublanguage of the respective conforming OMS language; e.g. DOL’s OMS reference
and extension construct should be preferred over OWL’s import construct.
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9. DOL Syntax

e a module Extraction of an OMS, using a restriction signature (InterfaceSignature).

In all of these cases except for translation, a RemovalKind specifies whether the listed symbols are removed from the OMS,
or whether they are kept (and the other ones are removed).

Filtering )
. |+removalkind : RemaovalKind [1] Extraction
+fitering +removalkind : Remaovalkind [1]

. o
+hasicOMS 11 A
= 5 wtraction (0.*
Approximation P e
B MS " +apprs 1 i :
) +removalking : RemovalKind [1] +interfaceSignature 1

RemovalKind 0.* | +interfaceSignature InterfaceSignature

A
'r(:;zve +interfaceSignature |0.*
Reduction +approximation |0.*
+removalkind | Removalking [1] +generalSymbolMapltem — +I°9'°R9f10“1 +languageRef
1. y i S h
+reduction L T ationRef
+omsLanguageTranslationRe
i g .
+reduction (0. ) i % g
+omsLanguageTranslation [0..* Sumhol [HSOUICE It
OMSLanguageTranslation 1 [
Htarget +symbolMapttem (0.*
+symbol 1
+omsLanguageTranslation |0..* 1.* +symbol
L 0.*

+namedTranslation

OMSTranslation DefaultTranslation HamedTranslation  [0.*

+omsTranslation |0..*

+omsTranslation |0..* |

+default Translation |0..*

+symbolvap J0..1 +symbollist

SymbolMap |+symbolap 0.* [SymbolSet |+symbolist
+symhbolList |'1

0.
0.1

9.4.2. Concrete Syntax

While in most cases the translation from concrete to abstract syntax is obvious (the structure is largely the same),
e both $satisfiable and $mcons are translated to model-conservative
e both %consistent and $ccons are translated to consequence-conservative,,
e both $unsatisfiable and %$notmcons are translated to not-model-conservative,
e both $inconsistent and $notccons are translated to not—consequence-conservative,,

e Moreover, both closed-world and minimize are translated to minimize.

BasicOMS ::= <language and serialization specific>
ClosableOMS ::= BasicOMS | OMSRef [ImportName]
ExtendingOMS ::= ClosableOMS | RelativeClosureOMS
RelativeClosureOMS ::= ClosureType ’'{’ ClosableOMS '}’

OMS ::= ExtendingOMS

| OMS Closure
| OMS OMSTranslation

| OMS Reduction

| OMS Extraction

| OMS Approximation

| OMS Filtering

| OMS "and’ [ConservativityStrength] OMS

| OMS ’then’ ExtensionOMS

| Qualification* ’:’ GroupOMS

| "combine’ NetworkElements [ExcludeExtensions]
|

GroupOMS
Closure ::= ClosureType CircMin [CircVars]
ClosureType = 'minimize’

"closed-world’
'maximize’

" free’

"cofree’
CircMin 1= Symbol Symbolx
CircVars 1= ’'vars’ Symbol Symbolx
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GroupOMS c:="{” OMS "}’ | OMSRef

OMSTranslation ::= 'with’ LanguageTranslationx SymbolMap
| "with’ LanguageTranslation+

LanguageTranslation ::= ’translation’ OMSLanguageTranslation

Reduction ::= 'hide’ LogicReduction* SymbolList

| "hide’ LogicReduction+
| "reveal’ SymbolList

LogicReduction "along’ OMSLanguageTranslation

SymbolList ::= Symbol /,’ Symbol x

SymbolMap ::= GeneralSymbolMapItem ',’ GeneralSymbolMapItem =*
Extraction ::= ’'extract’ InterfaceSignature

| "remove’ InterfaceSignature
Approximation ::= 'forget’ InterfaceSignature [’'keep’ LogicRef]
| "keep’ InterfaceSignature [’keep’ LogicRef]
| "keep’ LogicRef

Filtering "select’ SymbolList
| ’"select’ BasicOMS
| "reject’ SymbolList
| "reject’ BasicOMS
ExtensionOMS = [ExtConservativityStrength]
[ExtensionName]
ExtendingOMS
ConservativityStrength ::= Conservative | ’%mono’ | ’%wdef’ | ’%def’
ExtConservativityStrength ::= ConservativityStrength | ’'%implied’
Conservative ::= ’"%ccons’

| " %mcons’

| ’%notccons’

| "%notmcons’

| ’"%$consistent’

| ’"%$inconsistent’
| "%$satifsiable’

| ’"%$unsatisfiable’

InterfaceSignature ::= SymbolList
ImportName t:='%" IRI '%’
ExtensionName r:i= %" IRI ’%'
OMSkeyword ::= ’"ontology’
| "onto’
| ’"specification’
| ’spec’
| "model’
| "oms’
OMSDefinition = OMSkeyword OMSName ’='
[ConservativityStrength] OMS ’end’
Symbol c:= IRI
SymbolMapItem ::= Symbol ' |->’ Symbol
GeneralSymbolMapItem ::= Symbol | SymbolMapItem
Sentence ::= <an expression specific to an OMS language>
OMSName c:= IRI
OMSRef 1= IRI
LoLaRef ::= LanguageRef | LogicRef
OMSLanguageTranslation ::= OMSLanguageTranslationRef | ’->’ LoLaRef
OMSLanguageTranslationRef ::= IRI

The above grammar allows for some grouping ambiguity when using operators in OMS definitions. These ambiguities are
resolved according to the following list, listing operators in decreasing order of precedence:

e minimize, maximize, free, and cofree
e extract, forget, hide, keep, reject, remove, reveal, select, and with.
e and.

e then.

45



9. DOL Syntax

Multiple occurrences of the same operator are grouped in a left associative manner. In all other cases operators on the same
precedence level are not implicitly grouped and have to be grouped explicitly. Omitting such an explicit grouping results in
a parse error.

9.5. OMS Mappings

9.5.1. Abstract Syntax
An OMS mapping provides a connection between two OMS. An OMS mapping definition is the definition of either a named in-

terpretation (InterpretationDefinition, entailment (EntailmentDefinition), refinement (RefinementDefinition)

or equivalence (EquivalenceDefinition), a named declaration of the relation between a module of an OMS and the
whole OMS (ModuleRelDefinition), or a named alignment (AlignmentDefinition).

Both interpretation and refinements specify a logical entailment or specialization relation between OMS.

An InterpretationDefinition specifies source and target OMS (forming the InterpretationType), as well as a
SymbolMap and/or an OMSLanguageTranslation. The SymbolMap in an interpretation always must lead to a signature
morphism. A proof obligation expressing that the source OMS, when translated along the signature morphism and/or the
OMSLanguageTranslation, logically follows from the target OMS.

A symbol map in an interpretation is required to cover all non-logical symbols of the source OMS; the semantics
specification in clause makes this assumption. (Mapping a non-logical symbol twice is an error. Mapping two source
non-logical symbols to the same target non-logical symbol is legal, this is a non-injective OMS mapping.)

Refinements subsume interpretations (via SimpleRefinements), but allow the specification of much more complex
relation between OMS (and OMS networks). The style differs from interpretation in that even a single OMS is a refinement
(via RefinementOMS); this corresponds to the source of an interpretation. Using SimpleOMSRefinements, a refinement
can be further specialized to a (target) OMS via an OMSRefinementMap. The latter involves a symbol map and/or OMS
language translation, analogously to interpretations. With this style of notation, simple refinements can be easily chained up
(which cannot be done using interpretations). Refinements can also be composed (RefinementComposition), provided
that the target of the first refinement matches the source of the second one. Furthermore, refinements can also be specified
between networks (SimpleNetworkRefinement). A refinement between OMS networks has to specify both a mapping
(NodeMap) between the nodes of the OMS network, as well as, for each node, a symbol map from the OMS of that node to
the target OMS to which it is mapped (this is a NetworkRefinementMap).

+refinement +refinement
Refinement

1 1
+refinement_| [ﬂefinemen{?

1 +refinementt |1 1
setwor et
1
+simplehletworkRefinement (0. * +refinemer ition (0..* +refinementCon ition (0. | +simpleOMSRefinement |0.*
I3 riRefinement (o Refi itC. it v
0 Lé e mFoxition s-mpleumlswaﬁnemem'|+simph,‘o,‘,‘sﬁeﬁne,m,ﬂt

+simpleletworkRefinement |0..* +refinemertOMS 0. FSIMpEOMSRefinement [ 0.
+oms J1 +omsl‘1 +source tinterpretationType
OMS 1 0.+ |interpretationType LirterpretationType «enumerations
target  HrterpretationType ConservativityStrength
+networkRefinementMap 11 " 1 .
Net K e 1 0. cnnsequence-cnnser\ra{lve
workRefinementMap MappingDefinition model-conservative £
i rtDefinition |0..* +interpretationDefinition [0..* JEsqEonaraLenCE conservative
+networkRefinementhiap HETNEME] - i [ - not-model-conservative
[ iti i iti implied
RefinementDefinition +interpretationDefintion InterpretationDefinition Ir;“:r::mnrphic
srefnemertDefintion 0. o +conservativityStrength | ConservativityStrength [0..1] weak-defintional
+nodeMap [0, +interpretationDefintion definitional
NodeMap +interpretationtlame +interpretationName 1 o.* +interpretationDefinition (0..*
1 IRI
odehiap Harget +omsLanguageTranslation [0, * )
n.* 1 i = e +omsRefinementhap [1
OMSLanguage Translation
nodehap +source quaq . N e
Unadehlap 1 +omsLanguageTransiation 0. *+omsLanguageTranslation 0.1 +omsRefinementhiap
T
0.+ +symbolMap 10,1 -
+nadetlap ‘0"* ,_l_—bsymbulmlap +omsRefinementiap |0.*
o M JO1

An entailment is a variant of an interpretation where all symbols are mapped identically, while an equivalence states
that the model classes of two OMS are in bijective correspondence. As for refinements, entailments and equivalences are
also possible between networks (NetworkNetworkEntailment and NetworkEquivalence). An entailment between a
network as premise and an OMS as conclusion (NetworkOMSEntailment) specifies that all models of the network, when
restricted to a given node (given by an IRI), are models of the OMS.
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+entailmentDefinition (0..*

EntailmentDefinition
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MappingDefinition

+entailmentDefinftion

+entailmerthame

o0

+entaimentType

+omshame |1

1 EntailmentType

+equivalenceDefintion (0

‘ EquivalenceDefinition

1 R L+equivalenceName
1

* +equivalenceDefintion

EquivalenceType |+equivalenceType
7

1

0.

OMSOMSEntailment

+omsomsEntaiment

+ +networkOMSEntaiment |0, *

HetworkOMSEntailment

0.* +omsomsEntaimenrt |0..* +networkOMSEntailment
ERIEEH e =nce] omsEquivalence
+omsEquivalence |0.* +omsEquivalence (0.* 0.
+premise  +oms1 L1 +oms2 11 +mediatingOms J1 +conclusion
1 oms 1
+conclusion

1

o+ 0.F

+networkOMSEntaiment

HetworkNetworkEntailment

+networkNetworkErtaiment

Networ

et

rkEquivalence

+networkEquivalence |0."
+netwarkl |

+networkEguivalence

+network2L

0.*

0.

+mediatinghetwork || +premise,

0. +networkNetworkEntaiment

1 +conclusion,

0.*

+premise

Hetwork

1

Signature morphisms used in interpretations and refinements use a functional style of mapping symbols of OMS. In
contrast to this style, an alignment provides a relational connection between two OMS, using a set of Correspondences.
Each correspondence may relate some OMS non-logical symbol to another one (possibly given by a term) with an optional
confidence value. Moreover, the relation between the two non-logical symbols can be explicitly specified (like being equal,
or only being subsumed) in a similar way to the Alignment API [I8]. The relations that can be used in a correspondence
are equivalence, disjointness, subsumption, membership (the last two with a variant for each direction) or a user-defined
relation that is stored in a registry and must be prefixed with http://www.omg.org/spec/DOL/correspondences/, A
default correspondence can be used; it is applied to all pairs of non-logical symbols with the same local names. The default
relation in a correspondence is equivalence, unless a different relation is specified in a surrounding ’CorrespondenceBlock’.
Using an AlignmentCardinality, left and right injectivity and totality of the alignment can be specified (the default is
left-injective, right-injective, left-total and right-total). With AlignmentSemantics, different styles of networks of aligned
ontologies (to be interpreted in a logic-specific way) of alignments can be specified: whether a single domain is assumed, all
domains are embedded into a global domain, or whether several local domains are linked (“contextualized”) by relations.

DefaultCorrespondence |

+singleCorrespondence |0..* +singleCorrespondence

+generalizedTerm [1
GeneralizedTerm

+generalizedTerm |0.*

+symbolRef [1 +symbolRef,

«enumerations

+cnrrespnndencelﬂ *
G d\ |_+corr ponden
o+
| +correspondenceBlock |0.*
SingleCorrespondence CorrespondenceBlock
0..* +singleCorrespondence |0..* +singleCorrespondence |0..* +singleCorrespondence |0.*  +correspondenceBlock (0.* +correspondenceBlock (0.
+relztion J0..1
Relation +relation
0.1 +confidence (0.1
+confidence | Confidence |
0.1 [tdouble : double [1] |
+relationReference
0. —1RelalinnReferem:e | StandardRelation
|+s‘tandﬁrdRe\aﬁonVa\ues : StandardRelationValues [1] |
| +correspondencelD 0.1 i 1
] ‘
+alignmentMame |1 MappingDefinition
&Enumerations
StandardRelationValues
— +alignmertDefinition 0.4 +alignmentDefinition
is-subsumed ‘ tDefinition |o__a
ivalent
;T‘Z:L:)I;ap:‘tible ‘+al|gnmemSemant|cs: AlignmertSemantics [0..1] |
has-instance +alignmentDefintion (0. +alignmentDefintion (0.
instance-of
defaul-relation +alignmentCardinaltyPair |0..1 +source g1

single-domain
global-domain
contextualized-domain

+alignmentCardinalityBackward [1

+alignmentCardinalityPair |

AlignmentCardinalityPair

ot

+alignmentCardinaltyForward 11

+alignmentCardinaltyPair

[

AlignmentCardinalityBackward |

| AlignmentCardinalityForward |

+alignmentType

1

+alignmentType (0..*

AlignmentType

0

+alignmentType

+target'

A ModuleRelDefinition declares that a certain (“module”) OMS actually is a module of some other (“whole”) OMS
with respect to the InterfaceSignature.
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MappingDefinition

«enumerations T
ConservativityStrength ModuleRelDefinition
CONSEgUENCE-coNservative P . vativtwSt
model-‘lonservati\re +conservativityStrength © ConservativityStrength [0.1] |+ maduleRelDefinition
not-consequence-conservative | +moduleRelDefinition [0.."  +moduleRelDefintion |0.." o
not-model-conservative
implied +moduleMame |1 +interfaceSignature (1
monamarphic
weak-definitional | RI | ‘Irlterfacesigna‘ture
defintional
+moduleType [1 +moduleType  +module
ModuleType | « 1 Oonts

+moduleType  +whole
0. 1

9.5.2. Concrete Syntax

MappingDefinition ::= InterpretationDefinition
| EntailmentDefinition
| EquivalenceDefinition
| ModuleRelDefinition
| AlignmentDefinition
InterpretationDefinition ::= InterpretationKeyword
InterpretationName
[Conservative] ' :’
InterpretationType ’'end’
| InterpretationKeyword
InterpretationName
[Conservative] ' :’
InterpretationType ’=’
LanguageTranslationx
[SymbolMap] ’end’
| InterpretationKeyword
InterpretationName ’'='
Refinement ’end’

InterpretationKeyword ::= ’'interpretation’ | ’'view’ | 'refinement’
InterpretationName = IRI
InterpretationType ::= GroupOMS ’'to’ GroupOMS
Refinement ::= GroupOMS
NetworkName

|
| Refinement ’then’ Refinement

| GroupOMS ’refined’ [RefMap] ’'to’ Refinement

| NetworkName ’'refined’ [RefMap] ’'to’ Refinement

RefMap ’via’ LanguageTranslation [SymbolMap]
| ’via’ [LanguageTranslation] SymbolMap
| 'via’” NodeMap ( ’,’ NodeMap ) x*
NodeMap = OMSName ' |->’ OMSName

["using’ LanguageTranslation* [SymbolMap]]

= ’entailment’ EntailmentName ’'=’'
EntailmentType ’end’

EntailmentName ::= IRI

EntailmentType ::= GroupOMS ’'entails’ GroupOMS

| OMSName ’in’ Network ’entails’ GroupOMS

| Network ’"entails’ Network

EntailmentDefinition

EquivalenceDefinition ::= ’'equivalence’ EquivalenceName ’:’
EquivalenceType ’end’
EquivalenceName 1= IRI
EquivalenceType ::= GroupOMS ’<->’ GroupOMS ’=’ OMS
| Network ’<->' Network ’=’ Network

ModuleRelDefinition ::= "'module’ ModuleName [Conservative] ' :’/

ModuleType ’for’ InterfaceSignature
ModuleName 1= IRI
ModuleType ::= GroupOMS ’'of’ GroupOMS
AlignmentDefinition ::= ’"alignment’ AlignmentName

[AlignmentCardinalityPair] ' :’
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AlignmentType

["=" Correspondence ( ’,’ Correspondence ) x]

["assuming’ AlignmentSemantics] ’end’
AlignmentName 1= IRI
AlignmentCardinalityPair ::= AlignmentCardinalityForward

AlignmentCardinalityBackward

AlignmentCardinalityForward ::= AlignmentCardinality
AlignmentCardinalityBackward ::= AlignmentCardinality
AlignmentCardinality ::= "1" | 27 | "+ | "%’
AlignmentType ::= GroupOMS ’'to’ GroupOMS
AlignmentSemantics ::= ’SingleDomain’

| "GlobalDomain’
| ’ContextualizedDomain’

Correspondence := CorrespondenceBlock | SingleCorrespondence | "'

CorrespondenceBlock ::= 'relation’ [Relation] [Confidence] ' {’
Correspondence ( ’,’ Correspondence )x '}’

SingleCorrespondence ::= SymbolRef [Relation] [Confidence]

GeneralizedTerm [Correspondenceld]
"$(" IRI ")%’

Correspondenceld

SymbolRef ::= IRI

GeneralizedTerm = SymbolRef

Relation B A A A A rsr | 'ni’ | ’'in’ | IRI
Confidence = Double

Double ::= < a number € [0,1] >

9.6. Identifiers

This section specifies the abstract syntax of identifiers of DOL OMS and their elements. Further, it introduces the concrete
syntax that is used in the DOL serialization.

9.6.1. IRIs

In accordance with best practices for publishing OMS on the Web, identifiers of OMS and their elements should not just
serve as names, but also as locators, which, when dereferenced, give access to a concrete representation of an OMS or one of
its elements. (For the specific case of RDF Schema and OWL OMS, these best practices are documented in [32]. The latter
is a specialization of the linked data principles, which apply to any machine-processable data published on the Web [48].)
It is recommended that publicly accessible DOL OMS be published as linked data.

Therefore, in order to impose fewer conformance requirements on applications, DOL requires the use of IRIs for identifi-
cation per IETF/RFC 3987:2005. It is recommended that DOL libraries use IRIs that translate to URLs when applying
the algorithm for mapping IRIs to URIs specified in IETF/RFC 3987:2005, Section 3.1. DOL descriptions of any element
of a DOL library that is identified by a certain IRI should be located at the corresponding URL, so that agents can locate
them. As IRIs are specified with a concrete syntax only in IETF/RFC 3987:2005, DOL adopts the latter into its abstract
syntax as well as all of its concrete syntaxes (serializations).

In accordance with semantic web best practices such as the OWL Manchester Syntax [28], this OMG Specification does
not allow relative IRIs, and does not offer a mechanism for defining a base IRI, against which relative IRIs could be resolved.

Concerning these languages, note that they allow arbitrary IRIs in principle, but in practice they strongly recommend
using IRIs consisting of two components [32]:

namespace an IRI that identifies an OMS, usually ending with # or /. (See annex |§| for a specific linked-data compliant
URL scheme for DOL.)

local name a name that identifies a non-logical symbol within an OMS

PrefixBinding

+prefixBinding (0.

+separators 10..1
Separators

+libraryOMSSeparator : String [1]
+omsSymbolSeparator : String [1]

CurielRl
+eurie : String [1]

FulliRl
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9.6.2. Abbreviating IRIs using CURIEs

As IRIs tend to be long, and as syntactic mechanisms for abbreviating them have been standardized, it is recommended
that applications employ such mechanisms and support expanding abbreviatory notations into full IRIs. For specifying the
semantics of DOL, this OMG Specification assumes full IRIs everywhere, but the DOL abstract syntaz adopts CURIEs
(compact URI expressions) as an abbreviation mechanism, as it is the most flexible one that has been standardized to date.

The CURIE abbreviation mechanism works by binding prefixes to IRIs. A CURIE consists of a prefiz, which may be
empty, and a reference. If there is an in-scope binding for the prefix, the CURIE is valid and expands into a full IRI, which
is created by concatenating the IRI bound to the prefix and the reference. In the following example that uses DOL prefix
map mechanism, one the prefix |lang is bound to http://purl.net/DOL/languages/, which means that the CURIE
lang:O0WL2| will be expanded to the IRI http://purl.net/DOL/languages/OWL2.

sprefix ( : <http://www.example.org/mereology#>
owl: <http://www.w3.0rg/2002/07/owl#>
lang: <http://purl.net/DOL/languages/>

[ ge)

%% definitions of conforming languages

ser: <http://purl.net/DOL/serializations/>
%% ... and their serializations
log: <http://purl.net/DOL/logics/>

%% descriptions of logics
trans: <http://purl.net/DOL/translations/> )%
% ... and translations

oo

library Mereology

%% OWL Manchester syntax declaration:
language lang:0WL2 logic log:SROIQ syntax ser:0OWL2/Manchester
[...]

DOL adopts the CURIE specification of RDFa Core 1.1 W3C/TR REC-rdfa-core:2013, Section 6 with the following
changes:

e DOL does not support the declaration of a “default prefix” mapping (covering CURIEs such as :name).

e DOL does support the declaration of a “no prefix” mapping (covering CURIEs such as name). If there is no explicit
declaration for the “no prefix”, it defaults to a context-sensitive expansion mechanism, which always prepends the DOL
library IRI (in the context of a structured OMS where named OMS are referenced) respectively the current OMS IRI
(in the context of a basic OMS) to a symbol name. Both the separator between the DOL library and the OMS name

and that between the OMS name and the symbol name can be declared (using the keyword separators), and both
default to “//”.

e DOL does not make use of the safe_curie production.
e DOL does not allow binding a relative IRI to a prefix.
e Concrete syntaxes of DOL are encouraged but not required to support CURIEs.

CURIES are not required as a concession to having an RDF-based concrete syntax among the normative concrete syntaxes.
RDFa is the only standardized RDF serialization to support CURIEs so far. Other serializations, such as RDF /XML or
Turtle, support a subset of the CURIE syntax, whereas some machine-oriented serializations, including N-Triples, only
support full IRIs.

CURIESs can occur in any place where IRIs are allowed, as stated in clause [0.6.1] Informatively, the CURIE grammar
supported by DOL can be restated as follows:

CURIE ::= MaybeEmptyCURIE -

MaybeEmptyCURIE ::= [Prefix] RefWithoutComma

RefWithoutComma ::= Reference - StringWithComma

StringWithComma ::= UCharx ’,’ UCharx

UChar ::= < any Unicode ISO/IEC 10646 character >

Prefix ::= NCName ’:’< see “NCName” in W3C/TR REC-xml-names:2009, Section 3 >

Reference ::= Path [Query] [Fragment]

Path ::= ipath-absolute | ipath-rootless | ipath-empty< as defined in IETF/RFC 3987 >
Query ::= ’?’ iquery< as defined in IETF/RFC 3987 >

Fragment ::= ’#’ ifragment< as defined in IETF/RFC 3987 >

Note that outside the context of a basic OMS the prefix/reference separator of a CURIE is always the colon (:); only for
serializations of OMS languages other than DOL it may be redefined as stated in clause [2.2}
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Prefix mappings can be defined at the beginning of a DOL library (specified in clause these apply to all parts of the
DOL library, including basic OMS as clarified in clause .

Bindings in a prefix map are evaluated from left to right. Authors should not bind the same prefix twice, but if they
do, the later binding takes precedence.

9.6.3. Mapping identifiers in basic OMS to IRIs

While DOL uses IRIs as identifiers throughout, OMS languages do not necessarily do; for example:
e OWL W3C/TR REC-owl2-syntax:2009, Section 5.5 does use IRIs.
e Common Logic ISO/IEC 24707:2007 supports them but does not enforce their use.
e F-logic [39] does not use them at all.

However, DOL OMS mappings as well as certain operations on OMS require making unambiguous references to non-logical
symbols of basic OMS (SymbolRef). Therefore, DOL provides a function that maps global identifiers used within basic
OMS to IRIs. This mapping affects all non-logical symbol identifiers (such as class names in an OWL ontology), but not
locally-scoped identifiers such as bound variables in Common Logic ontologies. DOL reuses the CURIE mechanism for
abbreviating IRIs for this purpose (cf. clause .

The IRI of a non-logical symbol identifier in a basic OMS O is determined by the following function:

Require: D is a DOL library
Require: O is a basic OMS in serialization S
Require: id is the identifier in question, identifying a symbol in O according to the specification of .S
Ensure: i is an IRI
if id represents a full IRI according to the specification of S then
14 1id
else
{first construct a pattern cp for CURIEs in S, then match id against that pattern}
if the declaration of DOL-conformance of S redefines the prefix/reference separator character cs (cf. clause then
sep < cs
else if S forbids prefixed CURIEs then
sep < undefined
else
sep + : {the standard CURIE separator character}
end if
{The following statements construct a modified EBNF grammar of CURIEs; see ISO/IEC 14977:1996 for EBNF, and
clause for the original grammar of CURIEs.}
if sep is defined then
cp < [NCName, sep], Reference
else
cp < Reference
end if
if id matches the pattern cp, where ref matches Reference then
if the match succeeded with a non-empty NCName pn then
p < concat(pn, :)
else
p < no prefix
end if
if O binds p to an IRI pi according to the specification of S then
nsi <— pi
else
P < the innermost prefix map in D, starting from the place of O inside D, and going up the abstract syntax tree
towards the root of D
while P is defined do
if P binds p to an IRI pi then
nst <— pi
break out of the while loop
end if
P < the next prefix map in D, starting from the place of the current P inside D, and going up the abstract
syntax tree towards the root of D
end while
return an error
end if
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i < concat(nsi, ref)
else
return an error
end if
end if
return ¢
This mechanism applies to basic OMS given inline in a DOL library (BasicOMS), not to OMS in external documents
(NativeDocument); the latter shall be self-contained.
While CURIEs used for identifying parts of a DOL library (cf. clause are merely syntactic sugar, the prefix map for
a basic OMS is essential to determining the semantics of the basic OMS within the DOL library.

9.6.4. Concrete Syntax

IRI ::= /<’ FullIRI ’>" | CURIE

FullIRI ::= < an IRI as defined in IETF/RFC 3987:2005 >

CURIE ::= MaybeEmptyCURIE -

MaybeEmptyCURIE ::= [Prefix] RefWithoutComma

RefWithoutComma ::= Reference - StringWithComma

StringWithComma ::= UCharx ’,’ UCharx

UChar ::= < any Unicode ISO/IEC 10646 character >

Prefix ::= NCName ’:’< see “NCName” in W3C/TR REC-xml-names:2009, Section 3 >
Reference ::= Path [Query] [Fragment]

Path ::= ipath-absolute | ipath-rootless | ipath-empty< as defined in IETF/RFC 3987 >
Query ::= '?2' iquery< as defined in IETF/RFC 3987 >

Fragment ::= ’#’ ifragment< as defined in IETF/RFC 3987 >

In a CURIE without a prefix, the reference part is not allowed to match any of the keywords of the DOL syntax (cf.

clause .
9.7. Lexical Symbols

The character set for the DOL text serialization is the UTF-8 encoding of Unicode ISO/IEC 10646. However, OMS can
always be input in the Basic Latin subset, also known as US—ASCIIE For enhanced readability of OMS, the DOL text
serialization particularly supports the native Unicode glyphs that represent common mathematical symbols (e.g. Greek
letters) or operators (e.g. 0 for partial derivatives).

9.7.1. Key words and signs

The lexical symbols of the DOL text serialization include various key words and signs that occur as terminal symbols in
the context-free grammar in annex [J| Key words and signs that represent mathematical signs are displayed as such, when
possible, and those signs that are available in the Unicode character set may also be used for input.

Key words

Key words are always written lowercase. The following key words are reserved, and are not available for use as variables or
as CURIEs with no preﬁxEL although they can be used as parts of tokens.

alignment
along
assuming
and
closed-world
cofree
combine

end

entails
entailment
equivalence
excluding
extract

2Tn this case, IRIs will have to be mapped to URIs following section 3.1 of IETF/RFC 3987:2005.
3In such a case, one can still rename affected variables, or declare a prefix binding for affected CURIEs, or use absolute IRIs instead.
These rewritings do not change the semantics.
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free

hide

import

in

for

forget
interpretation
keep
language
library
logic
maximize
model
module
minimize
network

ni

of

oms

onto
ontology
refined
refinement
reject
relation
remove
result
reveal
select
separators
serialization
spec
specification
substitution
then

to
translation
using

vars

via

view

where

with

%ccons
%complete
%$consistent
%def
%implied
%inconsistent
gmcons
%mono
$notccons
$notmcons
Sprefix
Swdef

Key signs

Table P.1] following key signs are reserved, and are not available for use as complete identifiers. Key signs that are outside
of the Basic Latin subset of Unicode may alternatively be encoded as a sequence of Basic Latin characters.
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Table 9.1.: Key Signs

Sign  Unicode Code Point Basic Latin substitute
{ U+007B LEFT CURLY BRACKET
} U+007D RIGHT CURLY BRACKET

: U+003A COLON

= U+003D EQUALS SIGN

U+002C COMMA

U+21A6 RIGHTWARDS ARROW FROM BAR | —>
U+2192 RIGHTWARDS ARROW ->

1 1-

9.8. Integration of Serializations of Conforming Languages

Any document providing an OMS in a serialization of a DOL conforming language can be used as-is in DOL, by reference to
its IRI.

The following cases apply for injecting identifiers into fragments of OMS languages, depending on the conformance level
of the respective serialization of the OMS language used in terms of section [2.2

XML conformance Identifiers are added to XML elements by using the IRI-valued dol:id XML attribute from the http:
//www.omg.org/spec/DOL/1.0/xml namespace, or, if the serialization does not support this attribute, by adding
a dol:id XML element as the first child, containing exactly one text node with the IRI.

RDF conformance The RDF data model itself enables the assignment of IRI identifiers to all resources.

Text conformance Identifiers are added by inserting a special comment immediatelyEI after the structural OMS element to be
annotated, or, if this is not allowed and no ambiguity arises from inserting the comment before the structural element,
by doing the latter. The complete comment shall read % (I)$% if the language uses the % character to introduce
comments, where I is the identifier IRI. If the language uses a different comment syntax, the content of the comment

shall start with % (I) %, possibly preceded by whitespace.

Standoff markup conformance Standard mechanisms like XPointer (W3C/TR REC-xptr-framework:2003) or IETF/RFC
5147 shall be used as means of non-destructively assigning a URI to pieces of XML or text in the given OMS se-
rialization. (As a use case for XPointer, consider the identification of axioms in the OWL 2 XML serialization [30],
which does not provide a native way for assigning identifiers to axioms. If, for example, in an OMS file birds.owz,
the axiom <SubClassOf><Class IRI="#Penguin"/><Class IRI="#FlightlessBird"/></SubClassOf> is
the first one (in document order) to declare a superclass for Penguin, it can be referred to by the IRI birds.
owx#xpointer (/owl:SubClassOf/owl:Class[@IRI='"%23Penguin’ ] [1]) assuming the right binding for the
namespace prefix owl in scope, whereas unique reference by the axiom’s structure rather than by position would
require a more complex expression. The same axiom in the text-based OWL Manchester syntax [28] could be referred
to as birds.omn#line=27 according to IETF/RFC 5147 if it is on line 27 of the document.)

Where the given OMS language does not provide a way of assigning IRIs to a desired subject of an annotation (e.g. if one
wants to annotate an import in OWL), a document may employ RDF annotations that use XPointer or IETF/RFC 5147 as
means of non-destructively referencing pieces of XML or text by URI. (The extensibility of the XPointer framework may
be utilized by developing additional XPointer schemes, e.g. for pointing to subterms of Common Logic sentences.)

4The serialization may allow whitespace between the keyword and the comment.
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10. DOL Semantics

DOL is a logical language with a precise formal semantics. The semantics gives DOL a rock-solid foundation, and provides
increased trustworthiness in applications based on OMS written in DOL. The semantics of DOL is moreover the basis for
formal interoperability, as well as for the meaningful use of logic-based tools for DOL, such as theorem provers, model-
checkers, satisfiability modulo theories (SMT) solvers etc. Last but not least, the semantics has provided valuable feedback
on the language design, and has led to some corrections on the abstract syntax. These reasons have lead to inclusion of the
semantics in the standard document proper, even though the semantics is quite technical and therefore has a more limited
readership than the other clauses of this standard.

The semantics starts with the theoretical foundations. Since DOL is a language that can be applied to a variety of logics
and logic translations, it is based on a heterogeneous logical environment. Hence, the most important need is to capture
precisely what a heterogeneous logical environment is.

The DOL semantics itself gives a formal meaning to DOL libraries, OMS networks, OMS, and OMS mappings. For each
syntactic construct in the abstract syntax, a semantic domain is given. It specifies the range of possible values for the
semantics. Additionally, semantic rules are presented, mapping abstract syntax trees to some suitable semantic domain.

10.1. Theoretical Foundations of the DOL Semantics

In the following the theoretical foundations of the semantics of DOL are specified. The notions of institution and institution
comorphism and morphism are introduced, which provide formalizations of the terms logic, respectively logic translation,
respectively logic reduction.

Since DOL covers OMS written in one or several logical systems, the DOL semantics needs to clarify the notion of logical
system. Traditionally, logicians have studied abstract logical systems as sets of sentences equipped with an entailment relation
. Such an entailment relation can be generated in two ways: either via a proof system, or as the logical consequence relation
for some model theory. This specification follows the model-theoretic approach, since this is needed for many of the DOL
constructs, and moreover, ontology, modeling and specification languages like OWL, Common Logic, or CASL come with a
model-theoretic semantics, or (like UML class diagrams) can be equipped with one.

An abstract notion of logical system is given by the notion of satisfaction system [9], called ‘rooms’ in the terminology of
[23]. They capture the Tarskian notion of satisfaction of a sentence in a model in an abstract way.

Definition 1 A triple R = (Sen, M, =) is called a satisfaction system, or room, if R consists of
e a set Sen of sentences,
e a class M of models, and

e a binary relation = C M X Sen, called the satisfaction relation.

While this signature-free treatment enjoys simplicity and is wide-spread in the literature, many concepts and definitions
found in logics, e.g. the notion of a conservative extension, involve the vocabulary or signature ¥ used in sentences. Signatures
can be extended with new non-logical symbols, or some of these symbols can be renamed; abstractly, this is captured using
signature morphisms. Moreover, morphisms between models are also needed in order to give a semantics to minimize,
maximize, free and cofree—these constructs use model morphisms to select certain models, e.g. the minimal ones. This
leads to the notion of institution. An institution is nothing more than a family of satisfaction systems, indexed by signatures,
and linked coherently by signature morphisms.

Definition 2 Let Set be the category having all small sets as objects and functions as arrows, and let Cat be the category
of categories and functorsEI An institution [2])] is a quadruple I = (Sig, Sen, Mod, |=) consisting of the following:

e q categorﬁ Sig of signatures and signature morphisms,

e a functor Sen: Sig—> Set giving, for each signature 3, the set of sentences Sen(X), and for each signature morphism
o :3 — Y, the sentence translation map Sen(c) : Sen(X) — Sen(X'), where often Sen(o)(p) is written as o(p),

IStrictly speaking, Cat is not a category but only a so-called quasicategory, which is a category that lives in a higher set-theoretic
universe.
2See [1} 53] for an introduction into category theory.
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e o functor Mod : Sig®® — Cat giving, for each signature X, the category of models Mod(X), and for each signature
morphism o: ¥ — Y/, the reduct functor Mod(o) : Mod(X') — Mod(X), where often Mod(o)(M’) is written as
M'|,, and M’|, is called the o-reduct of M’, while M’ is called a o-expansion of M’|,,

e a satisfaction relation E=x C |Mod(X)| x Sen(X) for each X € |Sig|,

such that for each o: ¥ — X' in Sig the following satisfaction condition holds:

W) M s o) if Mo s v
for each M' € [Mod(X')| and ¢ € Sen(X), ezpressing that truth is invariant under change of notation and contert. O

Definition 3 (Propositional Logic) The signatures of propositional logic are sets ¥ of propositional symbols, and signa-
ture morphisms are just functions o : X1 — 3o between these sets. A 3-model is a function M : ¥ — {True, False}, and
the reduct of a Xa2-model M2 along a signature morphism o : X1 — o is the 31 -model given by the composition of o with
M. X-sentences are built from the propositional symbols with the usual connectives, and sentence translation is replacing
the propositional symbols in 3 along the morphism. Finally, the satisfaction relation is defined by the standard truth-tables
semantics. It is straightforward to see that the satisfaction condition holds. O

Definition 4 (Common Logic — CL) A common logic signature ¥ (called vocabulary in Common Logic terminology)
consists of a set of names, with a subset called the set of discourse names, and a set of sequence markers. A ¥-model
consists of a set UR, the universe of reference, with a non-empty subset UD C UR, the universe of discourse, and four
mappings:

e rel from UR to subsets of UD* = {{x1,...,2n) | 1,...,2n € UD} (i.e., the set of finite sequences of elements of
UD);

e fun from UR to total functions from UD* into UD;
e int from names in ¥ to UR, such that int(v) is in UD if and only if v is a discourse name;
e seq from sequence markers in X to UD™.

A Y-sentence is a first-order sentence, where predications and function applications are written in a higher-order like syntaz:
t(s). Here, t is an arbitrary term, and s is a sequence term, which can be a sequence of terms ti...tn, o a sequence
marker. A predication t(s) is interpreted by evaluating the term t, mapping it to a relation using rel, and then asking
whether the sequence given by the interpretation s is in this relation. Similarly, a function application t(s) is interpreted
using fun. Otherwise, interpretation of terms and formulae is as in first-order logic. A difference to first-order logic is the
presence of sequence terms (namely sequence markers and juztapositions of terms), which denote sequences in UD™, with
term juztaposition interpreted by sequence concatenation. Note that sequences are essentially a non-first-order feature that
can be expressed in second-order logic. For details, see [16].

A CL signature morphism consists of two maps between the sets of names and of sequence markers, such that the property
of being a discourse name is preserved and reﬂectedEl Model reducts leave UR, UD, rel and fun untouched, while int and
seq are composed with the appropriate signature morphism component. O

Further examples of institutions are: SROZQ(D), unsorted first-order logic, many-sorted first-order logic, and many
others. Note that reduct is generally given by forgetting parts of the model.

For the rest of the section, an arbitrary institution is considered. A theory is a pair (3, A) where X is a signature and A
is a set of X-sentences. A theory (3, A) is consistent if there exists a ¥-model M such that M | ¢ for ¢ € A. Semantic
entailment is defined as usual: for a theory A C Sen(X) and ¢ € Sen(X), A entails ¢, A |= ¢, if all models satisfying all
sentences in A also satisfy ¢. A theory morphism ¢ : (3,A) — (¥, A’) is a signature morphism ¢ : ¥ — ¥’ such that

A 9(A).

Institution comorphisms capture the intuition of encoding or embedding a logic into a more expressive one.

Definition 5 (Institution Comorphism) An institution comorphism from an institution I = (Sig’, Mod’, Sen’, =)
to an institution J = (Sig”,Mod”’,Sen” |=7) consists of a functor ® : Sig’ — Sig”’, and two natural transformations
B : Mod” 0 ® = Mod’ and a : Sen” = Sen” o ®, such that for each I-signature ¥, each sentence ¢ € Sen’ (%) and each
model M’ € Mod” (®(X))

M’ ':é(z) an(p) & Bu(M) ':é Pp-
holds, called the satisfaction condition. O
Here, ®(X) is the translation of the signature X from institution I to institution J, as(¢) is the translation of the X-sentence

¢ to a ®(X)-sentence, and Sx(M’) is the translation (or perhaps better: reduction) of the ®(X)-model M’ to a Y-model.
Naturality of o and 8 means that for each signature morphism o : ¥; — 32 in [ the following squares commute:

3That is, a name is a discourse name if and only if its image under the signature morphism is.
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o B
Sen’ (21) ——=% Sen” (B(,)) Mod” (®(2)) —2> Mod” (£2)
SenI(a)i iSenJﬁP(o‘)) lModJ@P(a)) \LModI(o)
Sen’ () ——> Sen” (2(%2)) Mod” (®(%1)) — Mod” (1)
2 2

A comorphism is:

o faithful if logical consequence is preserved and reflected along the comorphism:
I E ¢ iff a(l) =7 alp)

e model-expansive if each Py is surjective;

e (weakly) ezxact if for each signature morphism o: 31 — X, the naturality diagram

Mod” (®(22)) hicz: I Mod’ (%5)

iModJ(é(g)) \LModI(U)
Mod” (®(X1)) = Mod’ (%)
1

admits (weak) amalgamation, i.e. any for any two models M> € Mod’(X2) and M{ € Mod” (®(%1)) with M|, =
Bs, (M71), there is a unique (not necessarily unique) Mj € Mod” (®(22)) with Bs, (M3) = Mz and Mj|e(,) = M1;

o a subinstitution comorphism if ® is an embedding, each asx is injective and each By is bijectiveﬂ
e an inclusion comorphism if ® and each as are inclusions, and each fs is the identity.

It is known that each subinstitution comorphism is model-expansive and each model-expansive comorphism is also faithful.
Faithfulness means that a proof goal I' =7 ¢ in T can be solved by a theorem prover for J by just feeding the theorem prover
with (") =7 a(p). Subinstitution comorphism preserve the semantics of more advanced DOL structuring constructs such
as OMS translation and OMS reduction.

Definition 6 Given an institution I = (Sig’, Mod’, Sen’, |:I), the institution of its theories can be defined, denoted I", as
follows. The category of signatures of I'" is the category of I-theories and I-theory morphisms, that is denoted Thi. For
each theory (X, A), its sentences are just 3-sentences in I, and its models are just X-models in I that satisfy the sentences
in A, while the (3, A)-satisfaction is the X-satisfaction of sentences in models of I. O

Using this notion, logic translations can be defined that include axiomatization of parts of the syntax of the source logic
into the target logic.

Definition 7 Let I = (Sig’, Mod”,Sen’, =7) and J = (Sig”,Mod”,Sen”, |=7) be two institutions. An theoroidal institu-
tion comorphism from I to J is a institution comorphism from I to J*". O

Institution morphisms capture the intuition of projecting from a more expressive logic to a less expressive one.

Definition 8 (Institution Morphism) An institution morphism from an institution I = (Sig’, Mod’,Sen’  =7) to
an nstitution J = (Sig’,Mod”, Sen” | |=7) consists of a functor ® : Sig" — Sig”’, and two natural transformations § :
Mod’ = Mod” o ® and a : Sen” o & = Sen’, such that for each I-signature X, each sentence ¢ € Sen” (®(X)) and each
model M € Mod’ (X)

M 5 axn(p) € Bo(M) Eis) ¢.

holds, called the satisfaction condition. O

Colimits are a categorical concept providing means of combining objects interconnected by morphisms, where the colimit
glues together objects along the morphisms. They can be employed for constructing larger theories from already available
smaller ones, see [24].

A networkﬂ in a category C is a functor D : G — C, where G is a small categoryﬂ and can be thought of as the shape
of the graph of interconnections between the objects of C selected by the functor D. A cocone of a network D : G — C
consists of an object ¢ of C' and a family of morphisms «;: D(i) —> ¢, for each object ¢ of G, such that for each edge of the

4 An isomorphism if model morphisms are taken into account.

5A network is called a diagram in category theory texts. This terminology is introduced to disambiguate OMS networks from UML
diagrams.

SThat is, it has a set of objects and sets of morphisms between them instead of classes.
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network, e: ¢ — 4’ it holds that D(e); ar = cui. A colimiting cocone (or colimit) (¢, {evi}ic|q|) can be intuitively understood
as a minimal cocone, i.e. has the property that for any cocone (d, {f:}:c|c|) there exists a unique morphism v: c—d such
that a;;y = B;. By dropping the uniqueness condition and requiring only that a morphism ~ should exist, a weak colimit is
obtained.

When G is the category e <—— ¢ ——> o with 3 objects and 2 non-identity arrows, G-colimits are called pushouts.

A major property of colimits of specifications is amalgamation (also related to ‘exactness’ [I9]). It can be intuitively
explained as stating that models of given specifications can be combined to yield a uniquely determined model of a colimit
specification, provided that the original models coincide on common components. Amalgamation is a common technical
assumption in the study of specification semantics [71].

In the sequel, fix an arbitrary institution I = (Sig, Sen, Mod, |=).

Definition 9 Given a network D: J — Sig’, a family of models M = {My};c|s is consistent with D (or sometimes
compatible with D) if for each node p of D, M, € Mod(D(p)) and for each edge e : p — q, My = My|pe). A cocone
(2, (45)jels) over the metwork D: J — Sig’ is called weakly amalgamable if it is mapped to a weak limit by Mod. For
models, this means that for each D-compatible family of models (M;);e|s|, there is a ¥-model M, called an amalgamation
of (Mj)je)g, with M|, = M; (j € |J|), and similarly for model morphisms. If this model is unique, the cocone is called
amalgamable. I (or Mod) admits (finite) (weak) amalgamation if (finite) colimit cocones are (weakly) amalgamable. Finally,
I is called (weakly) semi-amalgamable if it has pushouts and admits (weak) amalgamation for these. O

[11] studies conditions for existence of weakly amalgamable cocones in a heterogeneous setting, where the network consists
of signatures (or theories) in different logics. Since a network may admit more than one weakly amalgamable cocone, a
selection operation is required both for the weakly amalgamable cocone of a network and for the (potentially non-unique)
amalgamation of a family of models compatible with the network. This allows us to define a function colimit taking as
argument a network of heterogeneous signatures and returning the selected weakly amalgamable cocone for the network and
a function @ taking as argument a family of models compatible with a network and returning its selected amalgamation.

To be able to talk about the symbols of a signature in a formal way, it is required that the category of signatures of an
institution is an inclusive category with symbols, as defined below:

Definition 10 An inclusive category with symbols is an inclusive category C equipped with a faithful functor | |: C — Setﬂ
that preserves inclusions.

10.2. Semantics of DOL Language Constructs

The semantics of DOL is based on a fixed (but in principle arbitrary) heterogeneous logical environment. The semantic
domains are based on this heterogeneous logical environment. A specific heterogeneous logical environment is given in the
annexes.

A heterogeneous logical environment is given by a collection of OMS languages and OMS language translationsﬂ a
collection of institutions, institution morphisms and institution comorphisms (serving as logics, logic reductions and logic
translations), and a collection of serializations. Moreover, some of the institution comorphisms are marked as default
translations (but only at most one between a given source and target institution), and there is a binary supports relation
between OMS languages and institutions, and a binary supports relation between OMS languages and serializations. Each
language is required to have a default logic and serialization.

It is required that for each institution in the heterogeneous logical environment there is a trivial signature () with model
class My and such that there exists a unique signature morphism from () to any signature of the institution. Moreover,
the existence of a partial union operation on logics is required; denoted |J: Li|JL2 = (L,p1 : L1 — L,p2 : Ly — L),
when defined. Finally, some of the comorphisms are marked as default translations and some of the morphisms as default
projection, with the condition that between two institutions at most one comorphism and at most one morphism is marked
as default.

For each logic in the heterogeneous logical environment, it is further required that there is:

e a function giving the semantics of basic OMS. It has format
(A = semBasic(ang,logic,ser) (2, BasicOMS),
where X is a signature giving the local environment, ¥’ D ¥ is the resulting signature, and A’ the resulting set of
sentences,
e a function that turns a symbol map into a signature morphism,

e a relativization procedure taking as argument a theory and giving as result a theory, and three procedures for trans-
lating correspondences of alignments into sentences in the logic, as needed in Section [10.2.4]

"That is, (C,|_|) is a concrete category.
8The terms OMS language and serialization are not defined formally. For this semantics, it suffices to know that there is a language-
specific semantics of basic OMS as defined below.
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Further, for each institution, it is required that there exist (possibly partial) union and difference operations on signatures.
These concepts could be captured in a categorical setting using inclusion systems [19]. However, inclusion systems are too
strong for the purposes of this specification. Therefore, weaker assumptions will be used.

Definition 11 An inclusive category [25] is a category having a broad subcategorﬂ which is a partially ordered class with
finite products and coproducts, called intersection (denoted N) and union (denoted U) such that for each pair of objects A, B,
AU B is a pushout of AN B in the category. O

A category has pushouts which preserve inclusions iff there exists a pushout

AC—= A/

|

BC——= B’

for each span where one arrow is an inclusion.
A functor between two inclusive categories is inclusive if it takes inclusions in the source category to inclusions in the
target category.

Definition 12 An institution is weakly inclusive if
e Sig is inclusive and has pushouts which preserve inclusions,
e Sen is inclusive, and

e cach model category have a broad subcategory of inclusions.

Let I be a weakly inclusive institution. I has differences, if there is a binary operation \ on signatures, such that for each
pair of signatures X1, Y2, the greatest signature X such that

1. ¥C3¥

2. XNE =0
exists and is equal to 3; \ 2s.

This concludes the definition of heterogeneous logical environment and the assumptions made about it.

DOL follows a model-theoretic approach on semantics: the semantics of OMS will be defined as a class of models over
some signature of an institution. This is called model-level semantics. In some cases, but not in all, one can also define a
theory-level semantics of an OMS as a set of sentences over some signature of an institution. The two semantics are related
by the fact that, when both the model-level and the theory-level semantics of an OMS are defined, they are compatible in
the sense that the class of models given by the model-level semantics is exactly the model class of the theory given by the
theory-level semantics.

The following unifying notation is used for the two semantics of an OMS O:

e the institution of O is denoted Inst(O),
e the signature of O is denoted Sig(O) (which is a signature in Inst(O)),
e the class of models of O is denoted Mod(O) (which is a class of models over Sig(O)),
e the set of axioms of O is denoted Th(O) (which is a set of sentences over Sig(O)).
Moreover, the semantics of O is the tuple sem(O) = (I,X, M,A) where Inst(O) = I, Sig(O) = X, Mod(O) = M and
Th(O) = A. In the following, we will freely mix these two equivalent descriptions of the semantics. That is, whenever
sem(O) is determined in some the context, then also its components Inst(O), Sig(O), Mod(O) and Th(O) are determined.
Vice versa, if the four components are determined, then so is sem(O).
The theory-level semantics of O can be undefined, and then so is Th(O). When Th(O) is defined, Mod(O) can be obtained
as Mod(O) = {M € Mod(Sig(O))| M = Th(O)}.
Intuitively, OMS mappings denote various types of links between two or more OMS. The semantics of OMS mappings
can be captured uniformly as a graph whose nodes N are labeled with

Name(N), the name of the node

Inst(N), the institution of the node

Sig(N), the signature of the node

e Mod(N), the class of Sig(IN)-models of the node
Th(N), the set of Sig(V)-sentences of the node

9That is, with the same objects as the original category.
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and which has two kinds of edges:
e import links (written using single arrows, S — T)
e theorem links (written using double arrows, S = T')

both labeled with heterogeneous signature morphisms between the signatures of the source and target nodes. The theory
of a node may be undefined, as in the case of OMS, and when it is defined, the class of models of that node is the class of
models of Th(N). For brevity, the label of a node may be written as a tuple. Further, it is required that any OMS can be
assigned a unique name.

The semantics of a network of OMS is a graph whose nodes are labeled like in the semantics of OMS mappings and edges
are labeled with heterogeneous signature morphisms (i.e. an edge from the node S to the node T is labeled with a pair
(p,o) where p = (®,, ) : Inst(S) — Inst(T) is an institution comorphism and o : ®(Sig(S)) — Sig(T) is a signature
morphism in Inst(7")). The intuition is that network provide means of putting together graphs of OMS and OMS mappings
and of removing sub-graphs of existing networks.

The semantics of OMS generally depends on a global environment I" containing:

e a graph of imports between OMS, as in the semantics of OMS mappings but only with import links between nodes,
denoted I'.emports

e a mapping from IRIs to semantics of OMS, OMS mappings, and OMS networks, that is also denoted by I', providing
access to previous definitions,

e a prefix map, denoted I'.prefix, that stores the declared prefixes,
e a triple I'.current that stores the current language, logic and serialization.

If T is such a global environment, I'[IRI — S] extends the domain of I' with IRI and the newly added value of I in
IRI is the semantic entity S. T'y is the empty global environment, i.e. the domain of I'y is the empty set, its import graph
T.imports is empty, the prefix map is empty and the current triple contains the error logic together with its language and
serialization. The union of two global environments I'; and I'z, denoted I'y U I'y, is defined only if the domains of I'y and
I'1(IRI) if IRI € dom(T'1)
I2(IRI) if IRI € dom(I'2)
T1.imports U Ta.imports, I'1 U Ta.current = Ty.current and T'y U Da.prefiz = Ti.prefiz U Da.prefiz. T.{prefix = PMap}
represents the global environment that sets the prefix map of I to PMap and I'.{current = (lang, logic, ser)} for updating
the current triple of I" to (lang, logic, ser).

DOL assumes a language-specific semantics of native structured OMS, inherited from the OMS language. For a native
structured OMS O in a language L, logic L' and serialization S, semr,1’,5)(O) denotes the language-specific semantics
of O. Further, DOL assumes similar language-specific semantics of a basic OMS fragment O in the context of previous

declarations, which is denoted semgi’,{\gib‘ (0).

T2, and of I'1.prefiz and T's.prefiz are disjoint, and then 't UT2(IRI) = , 1 UT2.imports =

10.2.1. Semantics of Documents

In this section the semantics of DOL counstructs regarding documents and DOL libraries is defined.

‘ sem(Document) =T’ ‘

A document is either a DOL library, or a native document written in one of the languages supported by the heterogeneous
logical environment.
For a NativeDocument native Document,

sem(nativeDocument) = I

where IV = Ty.{current = L}, with L determined from the extension of the file containing the native document and
I = T[IRI — SEM(r 1ang.1" .logic, I .ser) (Rative Document)).

Note that if the OMS in the DOL library does not conform with the logic determined by the extension of the DOL library,
sem(native Document) will be undefined.

The rule for DOLLibrary is given below.

Semantics of libraries

‘ sem(DOLLibrary) =T ‘

A DOL library is list of definitions of OMS, OMS mappings and OMS networks, starting with an optional prefix map and
a qualification.
For a DOLLibrary dolLibrary,
sem(dol Library) = T’

60



10. DOL Semantics

where
sem(dolLibrary.prefixMap) = PMap,
Iy =Ty {prefix = PMap},
sem(I'1, dolLibrary.qualification) = Iy,
sem(T'2, dol Library.libraryItem) = IV
Note that dolLibrary.libraryName is just discarded here. However, this name should be the IRI of the document
containing the Document. This is known as “linked data compliance”. Tools can issue a warning (not an error), if a
Document does not follow this practice.

Semantics of lists of library items

/

‘ sem(T, Sequence(LibraryItem)) =T

If libltema, ..., libItem,, are all LibraryItems,

sem(T, Sequence{libItemy, ..., libltem,}) =T’

where

sem(T,libItem,) = T'y,
sem(T'y,libItema) =Ty, ...
sem(Tp—1, libItem,,) = T".

Semantics of library items

sem(I',LibraryItem) =TI

For a LibraryImport libImport,
sem(T', libImport) = T UT’

where sem(T, libImport.1ibraryName) = anlRI and sem(anIRI) =T".
A LibraryItem can also be an OMSDefinition, NetworkDefinition or MappingDefinition, and equations for
these are given in the next sections. (Annex [K]|also introduces QueryRelatedDefinition.)

Semantics of qualifications

’ sem(T',Qualification) =T" ‘

For a LanguageQualification g,

sem(T,q) =T"

where I" = T'.{current = (q.1languageRef, logic’, ser’)} and
logic — { logic(T.current), if g.languageRef supports logic(T.current)
default logic for g.1anguageRef, otherwise
ser’ — { ser(I".current), if g.languageRef supports ser(I".current)
default serialization for q.languageRef, otherwise
For a LogicQualification g,
sem(T,q) =T"

where I = T'.{current = (lang’, q.1ogicRef, ser’)}
lang = lang(T.current), ser = ser(I'.current)
lang’ = { lang, if lang supports g.logicRef

the unique language supporting g.1ogicRef, otherwise
ser’ — 1 sem if lang’ supports ser

the default serialization for lang’, otherwise
Note that “the unique language supporting q.1ogicRef” may be undefined; in this case, the semantics of g construct is
undefined.
For a SyntaxQualification g,
sem(T,q) =T"

where lang = lang(T.current), logic = logic(T.current) and
I" = I'{current = (lang, logic, q.syntaxRef)}. The semantics is defined only if lang supports q.syntaxRef.
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10.2.2. Semantics of Networks

The semantics of networks of OMS is given with the help of a directed graph. Its nodes and edges are specified by the
NetworkElements, which can be OMS, OMS mappings, or OMS networks. Intuitively, the graph of a network consists
of the union of all graphs of the network elements it contains, where an OMS yields a graph with one isolated node.
By convention, all imports in the graph I'.imports of the current context between nodes that are specified in the list of
NetworkElements are also included in the graph of the network. The nodes and edges given in the ExcludeExtensions
list are then removed from the graph of the network.

An additional Id can be specified for each node, with the purpose of letting the user specify a prefix in the colimit of a
network for the symbols with the origin in that node that must be disambiguated.

The following auxiliary functions are used:

e insert(G,T,iri,id), where G is a graph, I' is a global environment, iri is an IRI and id is an Id, defined as follows:

— if 4ri denotes an OMS in I, then a new node named iri and labeled with I'(iri) and with id is added to G, unless
a node named iri already exists in G, and in this case G is left unchanged,

— if 4ri denotes an OMS mapping or a network in I, the result is the union of G with the graph of I'(ird).
e removeElement(I', G,anl RI), where G is a graph, I is a global environment and an/RI is an IRI, defined as follows:

— if anI RI denotes an OMS in I', then the node labeled with an/RI and all its incoming and outgoing edges are
removed from G,

— if anIRI denotes an OMS mapping in I', then I'(anIRI) gives a graph G’ and two nodes N; and N». Then all
nodes of G’ other than N; and N2 and all the edges of G’ are removed from G.

— if anI RI is a network in I', then all the nodes of its graph and all their incoming and outgoing edges are removed
from G.

e removePaths(T', G,iri1,iriz), where G is a graph, I' is a global environment and ériq,iriz are IRIs, whose result is
that all paths of imports in G between the nodes labeled with iri; and iriz are removed from G.

Finally, the operation addImports(T', G, [irii,...,iriy]) adds to G all import edges in I'.imports between nodes which
appear in the subgraph determined by I'(iré1),...,T'(iris).

Semantics of network definitions

‘sem(P,NetworkDefinition) =TI

If n is a NetworkDefinition,
sem(T,n) =T

where I'" = I'[n.networkName — sem(l', n.network)].

If n.ConservativityStrength is model-conservative, the semantics is only defined if sem (T, n.network) # 0.

If n.ConservativityStrength is consequence-conservative, the semantics is defined only if all signature-free
sentences that follow from the network, see entailment of OMS by networks, are tautologies.

If n.ConservativityStrength is monomorphic, the semantics is only defined if sem(T", n.network) consist of exactly
one isomorphism class of families of models.

If n.ConservativityStrength is weak-definitional, the semantics is only defined if sem(I", n.network) is at most
a singleton.

If n.ConservativityStrength is definitional, the semantics is only defined if sem(I',n.network) is a singleton.

If n.ConservativityStrength is not-model-conservative, the semantics is only defined if sem(I",n.network) =
0.

If n.ConservativityStrengthis not-consequence-conservative, the semantics is defined only if not all signature-
free sentences that follow from the network, see entailment of OMS by networks, are tautologies.

Semantics of networks

‘ sem(T',Network) = G‘

If n is a network,
sem(l',n) = G’

where sem([, n.networkElement) = G and sem(T, G,n.excludedElement) = G'.
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Semantics of sets of network elements

sem(T, Set(NetworkElement)) = G’

If elem, ..., elem, are all NetworkElements,
sem(T, Set{elem, ..., elem,}) = G’

where
G1 = sem(T, Gy, elem1)
Go = sem(T, G1, elems)

Gn = sem(T, Grn-1, elemy,),
G’ = addImports(T, Gy, [elem, . .., elemy]).

Semantics of network elements

‘sem(F, G,NetworkElement) = G ‘

If networkElement is a NetworkElement,

sem(T", G, networkElement) = insert(G,T', networkElement.elementRef.iri, networkElement.id)

Semantics of sets of excluded elements

‘ sem(T, G, Set(ExcludedElement)) = G’

If elems, ..., elem, are all ExcludedElements,
sem(T, G, Set{elemy, ..., elem,}) = G’

where
G1 = sem(T, G, elemq)
Go = sem(T, G1, elemy)

G’ = sem(T',Gp—1,elemy,)

Semantics of excluded elements

’ sem(T,G,ExcludedElement) = G’ ‘

If excludedElem is a ElementRef,

sem(T", G, excludedElem) = removeElement (T, G, excludedElem.ir1i)

If excludedElem is a PathReference,
sem(T', G, excludedElem) = removePaths(T', G, iri1, iri2)

where iri; = excludedElem.elementRef.iri and irip = excludedElem.elementRef2.iri).

10.2.3. Semantics of OMS

Semantics of basic OMS

sem(T',Basicoms) = (I, (Z, 2, M, A))

For a BasicOMS basicOMS in a global environment I'; the semantics is defined as follows:

sem(T, basicOM S) = (I, (T.logic, X', M', A"))
where
o (X', A") = semBasic(r.iang,r.logic,r.ser) (0, basicOM S)
o M'={M € Mod(Z') | M = A"}

e I is obtained from I' by adding to I'.imports a new node labeled with the name of basicOM S, T'.logic,>', M’ and
A
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Semantics of basic OMS in a local environment
sem(T, (Z,3, M, A),Basicoms) = (I, (Z, %', M, A"))

For a BasicOMS basicOMS in a global environment I" and local environment (Z, 3, M, A), its semantics is defined only
if I".logic = 7 as follows:

sem(T, (X, M, A), basicOMS) = (I, (T".logic, ©', M', A"))
where
o (X', A") = semBasic(r.iang,T.1ogic,T.ser) (2, basicOM S)
e M ={MeM|MEA}

e I is obtained from T by adding to I".imports a new node labeled with the name of basicOM S and the other components
as given by sem(r.iang,r.logic,Iser) (basicOMS).

Semantics of closable OMS

‘ sem(T',ClosableoMs) = (I, (Z, 2, M, A)) ‘

In the rest of this section, given a global environment I' and an OMS oms, the notation Env(I', oms) is used for the global
environment I such that sem(T,oms) =T".

The semantics of a BasicOMS has been defined above.

The semantics of an OMSReference o is given by

e Inst(o) = Inst(I'(0.omsRef))
e Sig(o) = Sig(I'(0.omsRef))
e Mod(0) = Mod(I'(0.omsRef£))
e Th(o) = Th(I'(0.omsRef))

e Env(l,0) extends the graph of imports I'.imports with a new node for o labeled as defined in the items above and
with a new edge from the node labeled with o.omsRef to o, named o.importName and labeled with the identity on
Sig(T'(0.omsRef)).

Semantics of closable OMS in a local environment
\ sem(T, (Z,%, M, A),Closableoms) = (I, (Z/, X/, M/, A")) \

The semantics of a BasicOMS has been defined above.
The semantics of an OMSReference o is defined only if Inst(I'(0.omsRef)) = T as follows:

e Inst(o) = Inst(I'(0.omsRef))

e Sig(o) = Sig(I'(0.omsRef)) UX

e Mod(o) = {M € Mod(Sig(0)) | M|z € M and M|sig(I'(0.omsRef)) € Mod(I'(0.omsRef))}
® Th(0) = tsig(r(o.omsre£)Csig(o) (Th(I'(0.0msRe£))) U txcsig(o) (A)

e Env(l,0) extends the graph of imports I'.imports with a new node for o labeled as defined in the items above and
with a new edge from the node labeled with o.omsRef to o, named o.importName and labeled with the inclusion of
¥ in Sig(I'(0.omsRef)).

Semantics of ExtendingOMS

sem(T, (Z,3, M, A),ExtendingoMs) = (I, (Z, X', M, A"))

The semantics for ClosableOMS has been defined above.

The semantics for minimization selects the models that are minimal in the class of all models with the same interpretation
for the local environment (= fixed non-logical symbols, in the terminology of circumscription).

Formally, if O" is a RelativeClosureOMS, O'.closureType = minimize and O = O'.closableOMS, then

e Inst(O')=T'

e Sig(0) =Y’
e Mod(O') = {M € M | M is minimal in {M' € M | M'|s, = M|s}}
e Th(O) = L
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where sem(T, (Z,%, M,A),0) = (I, (Z', %', M’, A")) and “minimal” is interpreted in the pre-order defined by 1 < 3 if
there is a signature morphism 3; — 3.
The theory-level semantics for O’ cannot be defined.
Enu(T, O') is obtained from I'' by adding to I .imports a new node labeled with (Name(O'), Inst(O’), Sig(O’), Mod(O"), Th(0’))
and an edge from the node of O to the node of O’ labeled with the identity morphism on Sig(O’).
The semantics of O’ is defined similarly for the other three alternatives of O’.closureType, only the model class differs:
e if O'.closureType = maximize, Mod(O’) = {M € M | M is maximal in {M' € M | M'|z = M|z}}
e if O'.closureType = free, Mod(O') = {M € M | M is initial in {M' € M | M'|s = M|s}}
e if O'.closureType = cofree, Mod(O') = {M € M | M is terminal in {M' € M | M'|s = M|s}}
Here, initial and terminal models are defined as in category theory: M is initial (terminal) in M if for each N € M, there
is exactly one morphism h: M — N (h: N — M).

Semantics of OMS

[sem(T, oms) = (I, (Z,%, M, A)) |

An OMS is interpreted in a context similar to that for a ClosableOMS, the difference being that there is no local
environment.
The semantics for an ExtendingOMS has been defined above.
If 0 is a ClosureOMS,
sem(T,0) = (I,2, M', 1)

where

(I,%, M, A) = sem(T’, 0.oms), Y min = sem(o.closure.closureType, X)),
Yyar = sem(o.closure.CircVars, ), Yfized = L\ (Zmin U Xoar)

and

e if o.closure.closureType = minimize, then

M ={MeM| M‘Eminuzﬁzed is minimal in {M' € M|Emznuzﬁwed | M"Eﬁwed = M|Eﬁzed}}
e if o.closure.closureType = maximize, then

M = {M e M| M‘Emm,uzﬁzed is maximal in {M/ € M|Eminuzﬁzed | Ml|2ﬁmt = M|Eﬁzﬂi}}

e if o.closure.closureType = free, then
M ={M € M| M|s,,,,usg,, is initial in {M" € Mls,,,,055.0 | M'|sp., = Mlsg.}t}

e if o.closure.closureType = cofree, then
M = {M eEM | M‘Enmnuzﬁzcd is terminal in {M/ € M|Em,muzﬁmd | Ml|2ﬁ.rcd = M‘Eﬁmcd}}

The semantics of a TranslationOMS O is given by
e Inst(O') = J,
e Sig(O’) = %', when sem(T, Sig(O'.oms), 0'.omsTranslation) = ((?, o, ) : Inst(O'.oms) — J,0 : ®(Sig(O’.oms)) —
),
e Mod(O') = {M € Mod(X') | B=(M]s) € Mod(O’.oms)}
e Th(O') = {Sen’(0)(ax(8)) | § € Th(O'.oms)}. It is defined only if O’.oms is flattenable.

e Env(T,0’) is obtained from I = Env(T",0’.oms) by extending I'".imports with a new node for O’ labeled as in the
items above and with a new edge from the node of O’.oms to the node of O’ labeled with ((®, @, 8), 7).

The semantics of a ReductionoMs O’ is
e Inst(O') = J,
e Sig(0’) = %', when sem(T, Sig(O’.oms), 0’.reduction) = ((®,«, 3) : Inst(O".oms) — J,o : &' — &(Sig(O’.oms))),
e Mod(O') = {Bs(M)|s | M € Mod(O'.oms)}
o Th(O') =L

e Env(T,0’) is obtained from I = Env(T",0’.oms) by extending I'".imports with a new node for O’ labeled as in the
items above and with a new edge from the node of O’ to the node of O’.oms labeled with ((®, v, 3), 7).

The semantics of an ExtractionOMs O’ is
e Inst(O') = Inst(O’.oms)
e Sig(O') =Y,
o Th(O') = A/
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Mod(O') is the class of Th(O)-models

Envu(T, O') is obtained from I'"' = Env(T,0’.oms) by extending I'’.imports with a new node for O’ labeled as in
the items above and with a new edge from the node of O’ to the node of O’.oms labeled with the inclusion of ¥’ in
Sig(O’.oms)

where sem(T, (Sig(O’.oms), Th(O'.oms)), 0’.extraction) = (X', A).
The semantics of an ApproximationoMs O’ is

Inst(O) = Z when (?,a, B) : Inst(O’.oms) — I) is the default projection (in case O'.approximation.logicRef is
missing, it is the identity on Inst(O’.oms))

Sig(0) = (%)

Th(O) = a;é(o/'om)(Th(O'.oms)') n SenI(Sig(O’.oms)m i.e. that part of Th(O’.oms) that can be expressed in the
smaller signature and logic

Mod(O) is the class of Th(O)-models

Enu(T, O') is obtained from I'"" = Env(T',0’.oms) by extending I'.imports with a new node for O’ labeled as in
the items above and with a new edge from the node of O’.oms to the node of O’ labeled with ((®,«,8),¢: ®(X) —
Sig(O’.oms))

where (Z,3%) = sem(T, (Inst(O’.oms), Sig(O'.oms)), 0’ .approximation).

The semantics of a FilteringOMS O, where O’ = O.filtering.basicOMS, is defined only if Sig(O’) C Sig(O.oms)
and Th(O’) C Th(O.oms). Two cases are distinguished based on the value of O.filtering.removalKind.
If O.filtering.removalKind = keep, the semantics of O is given by

Inst(O) = Inst(O')

Sig(O) = X' where Y’ is the smallest signature with Sig(O’) C ¥’ and Th(O’) C Sen(X’). (If this smallest signature
does not exist, the semantics is undefined.)

Th(O) = (Th(O.oms) N Sen(Sig(0))) U Th(O")

Mod(O) is the class of all Th(O)-models.

Env(T,0') is obtained from I'"" = Enuv(T,O.oms) by extending I'"'.imports with a new node for O labeled as in
the items above and with a new edge from the node of O to the node of O.oms labeled with the inclusion of ¥’ in
Sig(O.oms).

If O.filtering.removalKind = remove, the semantics of O is

Inst(O) = Inst(O')

Sig(O) = Sig(0.oms) \ Sig(0")

Th(O) = Th(O.oms) N Sen(Sig(0)) \ Th(O')
Mod(O) is the class of all Th(O)-models.

Env(T,O0') is obtained from I'"" = Env(T, O.oms) by extending I'"'.imports with a new node for O labeled as in
the items above and with a new edge from the node of O to the node of O.oms labeled with the inclusion of ¥’ in
Sig(O.oms).

The semantics of an UnionOMS O is

Inst(O) = I where Inst(O;) JInst(O2) = (I, (P1, a1, b1) : Inst(01) — I, (P2, oz, f2) : Inst(O2) — I)
Sig(0) = ®1(Sig(01)) U @2(Sig(02))

Mod(O) = {M € Mod(Sig(0)) | Bs;(M|s,sig0,))) € Mod(0i), for i =1,2}

Th(O) == O(l(Th(Ol)) @] OCQ(Th(OQ))

Env(T,0") is obtained from I'" = Env(Env(T, 01), 02) by extending I'" .imports with a new node for O labeled as in
the items above and with edges from the nodes of O; and O, respectively, to the node of O, labeled for each i = 1,2
with (‘I)i, Oéi,ﬂi, Li: ‘IDZ(O»L) — S|g(0))

where O; = O.oms and O2 = O.oms2.
If O.conservativityStrength is present, then O must be a conservative extension of the appropriate strength of O;.
The semantics of an ExtensionOMS O is

Inst(O) = Inst(O.oms) = Inst(O.extension) (which means that the institutions of O.oms and O.extension must
be the same)

Sig(O) = Sig(0.oms) U Sig((Inst(O.oms), Sig(O.oms), Mod(O.oms), Th(O.oms)), O.extension)
Mod(O) = {M € Mod(Sig(O)) | M|sig(0.ons) € Mod(O.oms) and M]|sig(0.extension) € Mod(O.extension)}

107y practice, one looks for a finite subset that still is logically equivalent to this set. Note that A® is the set of logical consequences
of A, i.e. A®* = Th(A).
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e Th(O) = Th(O.oms) U Th(O.extension)

e Enu(T,0’) is obtained from I'"' = Env(T, O.oms) by extending I'".imports with a new node for O labeled as in the
items above and with a new edge from the node of O.oms to the node of O labeled with the inclusion of Sig(O.oms)
in Sig(O).

The semantics of a QualifiedOMS O in the context I' is the same as the semantics of O.oms in the context IV given by
the semantics of O.qualification in the context I". The change of context is local to O.oms, which means that if the
qualification appears as a term in a larger expression, after its analysis the context will be T and not I”. Formally,

sem(I',0) = (I, (Z,2, M, A))
where (T, (Z,%, M, A)) = sem(sem (T, O.qualification), O.oms).
The semantics of a CombinationOMs O is
e Inst(0) =1,
e Sig(O) =X, where (1, X, {ti}ic|q|) is the colimit of the graph G given by the semantics of O.network,
e Th(O) = Uicig|1ti(Th(Oy)), where O; is the OMS label of the node ¢ in G
e Mod(O) = {M € Mod(X) | M|,; € Mod(0;),i € |G|}, where O; is the OMS label of the node ¢ in G.

e Env(l, 0) is obtained from I" by adding to I'.imports a new node for O labeled as in the items above and with edges
from each node in G to this new node labeled with the morphisms p; for each i € |G].

Semantics of OMS translations

’ sem(I",X,0MSTranslation) = (p, o) ‘

The semantics of a OMSTranslation O = is given by
e p=sem(O.omsLanguageTranslation) : I.logic — logic’
e o = sem(T.{current = (lang’, logic’, ser’)}, ®(2), O.symbolMap)

where lang’ and ser’ are the default language and serialization for logic logic’. If O.omsLanguageTranslation is missing,
it defaults to the identity comorphism of the current logic.

Semantics of OMS language translations

‘ sem(I",OMSLanguageTranslation) = (®?, a, ) ‘

The semantics of a OMSLanguageTranslation O is sem(I',0.iri) = (D, a, 8), where (®, o, ) is the institution co-
morphism named by O.iri in the heterogeneous logical environment.

’ sem(T", Sequence(OMSLanguageTranslation)) = (P, «, ) ‘

Ift1,...,t, are all OMSLanguageTranslations, sem(I', Sequence{ti,.. ., tn}) = (P, o, B), where sem(T', t;) = (Ps, s, B)
fort=1,...,nand (?,a,8) = (P1,1,61);...; (Pn, an, Bn).

Semantics of reductions

’ sem(T", X, Reduction) = (p, o) ‘

The semantics of a Reduction O = with O.reduction.removalKind = remove is given by
e p=sem(O.reduction.omsLanguageTranslation) : I'.logic — logic’

e 0 =1:% = &), where ¥/ = sem(I.{current = (lang’,logic’, ser’)}, ®(X), O.reduction.symbolList), lang’ and
ser’ are the default language and serialization for logic logic’ and ¢ is the inclusion morphism.

If O.reduction.omsLanguageTranslation is missing, it defaults to the identity morphism of the current logic of T'.
The semantics of a reduction O = with O.reduction.removalKind = keep is

e p is the identity morphism on the current logic of I'

e o is the inclusion of sem(I", ¥, O.reduction.symbolList) in X.
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Semantics of sets of symbols

sem(T', 2, Set(Symbol)) = X'

If s1,...,sn are all Symbols,
sem(I, %, Set{s1,...,sn}) = %'

where ¥’ is the smallest sub-signature of 3 containing sem(T', %, s1),...,sem(T, %, s,,), if such a sub-signature exists and is
otherwise undefined.

Semantics of symbol maps

‘sem(f‘, ¥, ¥, SymbolMap) =0 : 3 — %’ ‘

If m is a SymbolMap,

sem(I, 5, %', m) =0

where 0 = makeMorphismiogic(r.current) ((81,81), -+, (Sn, tn))
and (s,t) = sem(I", X1, X2, m.general SymbolMapItem),
Set{(s1,t1),...,(sn,tn)} = sem([, X1, X2, m.generalSymbolMapItem?).

Applications shall implicitly map those non-logical symbols of the source OMS, for which an explicit mapping is not
given, to non-logical symbols of the same (local) name in the target OMS, wherever this is uniquely defined — in detail:
Require: O;, O; are OMS
Require: M C |Sig(O,)| x |Sig(O:)| maps non-logical symbols (i.e. elements of the signature) of O, to non-logical symbols
Of Ot
for all e; € [3(0s)| not covered by M do
ns < localname(es)
N + {localname(e) | e € |X(0)|}
if Ny = {e:} then {i.e. if there is a unique target}
M+ MU {(es,er)}
end if
end for
Ensure: M completely covers |X(Os)|
The local name of a non-logical symbol is determined as followslﬂ
Require: e is a non-logical symbol (identified by an IRI; cf. clause
if e has a fragment f then {production ifragment in IETF/RFC 3987:2005}
return f

else
n < the longest suffix of e that matches the Nmtoken production of XML W3C/TR REC-xml:2008
return n

end if

Semantics of extractions

sem(T, (X,A),Extraction) = (%', A')

If e is an Extraction,
sem(T, (X, A),e) = (X, A"
where sem(T', 3, e.removalKind, e.interfaceSignature) = ¥”, (X', A’) is the smallest depleting ¥"-module (see [42]
for the definition in a description logic context and [36] for a generalization to an arbitrary institution), i.e. the smallest
sub-theory (%, A’} of (3, A) such that the following model-theoretic inseparability holds

A \ A/ =srus’ @

(In [42], it is shown that the smallest depleting ¥''-module exists in description logics, and in [36] this is generalized to
arbitrary institutions.)
This means intuitively that A \ A’ cannot be distinguished from ) (what ¥’ U X" concerns) and formally that

{M‘EIUE// ‘ M € MOd(E),M ': A\A/}
= {M‘Zlugu ‘ M e MOd(E)}

n practice, this can often have the effect of undoing an TRI abbreviation mechanism that was used when writing the respective OMS
(cf. clause . In general, however, functions that turn abbreviations into IRIs are not invertible. For this reason, the implicit
mapping of non-logical symbols is specified independently from IRI abbreviation mechanisms possibly employed in the OMS.

68



10. DOL Semantics

Semantics of approximations

sem(T, (Z,X), Approximation) = (Z,%')

If ¢ is an Approximation,
sem(T, %, a) = (Z,%)

where ¥/ = sem(I', ¥, a.removalKind,a.interfaceSignature) and sem(a.logicRef) = Z.

Semantics of filtering

sem(T,(%,A),Filtering) = (¢, Z, %', A')

If fisa Filtering such that f.removalKind = keep,
sem(T, (3, A), f) = (keep, 7,5, A")

where sem(T, (3, A), f.basicoMS) = (Z,%', A").
If fisa Filtering such that f.removalKind = remove,

sem(T, (2, A), f) = (remove, T, %', A")

where sem(T, (X, A), f.basicoMs) = (Z,%', A").

Semantics of extension

‘ sem(T, (Z,%, M, A),Extension) = (Z,%', M', A') ‘

If e is an Extension,
sem(L, (2,2, M, A),e) = (Z,5', M, A")

where (Z,%', M', A’) = sem(T, (X, M), e.extendingOMS).

If e.conservativityStrength is model-conservative or implied, the semantics is only defined if each model in
M is the Y-reduct of some model in M’. In case that e.conservativityStrength is implied, it is furthermore required
that ¥ = Y'. If e.conservativityStrength is consequenceconservative, the semantics is only defined if for each
Y-sentence ¢, M’ |= ¢ implies M | . If e.conservativityStrength is definitional, the semantics is only defined
if each model in M is the Y-reduct of a unique model in M’.

If e.extensionName is present, the inclusion link is labeled with this name.

Semantics of interface signatures

‘ sem(T', 2, RemovalKind, InterfaceSignature) = ¥’ ‘

If r is a RemovalKind and s is an InterfaceSignature, sem(I', ¥, Qual Symbol+)=Y', where

s YNsem(l, X, s.symbolList) if r=keep
| =\ sem(T', %, s.symbolList) if 7= remove

Semantics of OMS definitions

’ sem(T’,0OMSDefinition) =TI

An OMSDefinition O extends the global environment:
sem(T",0) = I'[O.omsName — sem(T", O.oms)]

I'.logic and Inst(O.oms) must be the same.

If O.conservativityStrength is model-conservative, the semantics is only defined if sem(I',O.oms) # 0. If
O.conservativityStrength is consequence-conservative, the semantics is only defined if sem(I", O.oms) has only
tautologieﬂ as signature-freﬂ logical consequences. If O.conservativityStrength is monomorphic, the semantics
is only defined if sem (I, O.oms) consist of exactly one isomorphism class of models. If O.conservativityStrength is
weak—-definitional, the semantics is only defined if sem(I", O.oms) is empty or a singleton. If O.conservativityStrength
is definitional, the semantics is only defined if sem(I", O.oms) is a singleton.

12 A tautology is a sentence holding in every model.
13 A signature-free sentence is one over the empty signature.
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Semantics of OMS references

‘ sem(I',OMSReference) = (Z,%X, M, A) ‘

If O is an OMSReference,
sem(T’,0) = T'(O.omsRef)

Semantics of symbols

‘ sem(I', 2, Symbol) = s ‘

If sym is a Symbol
sem (T, X, sym) = s

where s is a logic-specific symbol with the name sym.iri from |X|. If such symbol does not exist, the semantics is undefined.

Semantics of symbol map items

’ sem([', X1, X9, SymbolMapItem) ‘

If smi is a SymbolMapItem,
sem(T', X1, 3o, smi) = (s1, $2)

where sem(T", X1, smi.symbol) = s1 and sem(T, X2, smi.symbol2) = sa.

Semantics of general symbol map items

‘ sem(I", X1, Y2, GeneralSymbolMapItem) = (s,t) ‘

If gsmi is a SymbolMapItem, then its semantics has been given in the previous rule.
If gsmi is a Symbol, sem(I, X1, X2, gsmi) = (s, s) where sem(I', X1, gsmi) = s

Semantics of sentences

‘ sem(I’, ¥, Sentence) = ¢ ‘

If sen is a Sentence,
sem(T', X, sen) = ¢

where ¢ € Sen(X) and the analysis is done in a logic-specific way.

Semantics of references

‘ sem(LolaRef) = L ‘

L is the language or the institution from the heterogeneous logical environment named by LogicRef.

‘ sem(LanguageRef) = L ‘

L is the language from the heterogeneous logical environment named by LogicRef.

‘sem(SyntaxRef) = S‘

S is the serialization from the heterogeneous logical environment named by LogicRef.

’ sem(LogicRef) =L ‘

L is the institution from the heterogeneous logical environment named by LogicRef.
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Semantics of OMS language translations

‘ sem(I',OMSLanguageTranslation) = p‘

If t is a NamedLanguageTranslation, sem(I',t) = p where p is the institution comorphism from the heterogeneous
logical environment named by t.omsLanguageTranslationRef. This is defined only if the domain of p is the current
logic of T

If ¢ is a DefaultTranslation, sem(l',t) = p where p is the unique default institution comorphism from the het-
erogeneous logical environment running from I'.logic to t.1anguageRef (if this is a logic) or to some logic supported by
t.languageRef (if this is a language). If there is no or no unique such comorphism, the semantics is undefined.

10.2.4. Semantics of OMS Mappings

Semantics of mapping definitions

‘ sem(T',MappingDefinition) =T" ‘

See equations for InterpretationDefinition, EntailmentDefinition, EquivalenceDefinition,
ModuleRelDefinition and AlignmentDefinition.

Semantics of interpretation definitions

sem(T', InterpretationDefinition) =1

If dis an InterpretationDefinition,
sem(T,d) =T'
where IV = T'[d.interpretationName — (G, (p, o), L1, L2)]
and G is the graph L, (pig Lo where
e (Li,L2) = sem(I',d.interpretationType)
e p=(P,,) : Inst(L1) — Inst(Lz) is the comorphism given by sem(I', d.omsLanguageTranslation).
If d.oMSLanguageTranslation is missing, the default translations between the logics is selected.
o sem(I'.{current = (lang,logic',ser)}, ®(Sig(L1)),Sig(L2),d.symbolMap) = o, where [.current = (lang,logic, ser)
and logic’ is the target logic of p.
The semantics is only defined if Ssig(,)(M2|s) € Mod(L1) for each My € Mod(Lz).
If the optional argument d.conservativityStrength is
e model-conservative, for each model M; € Mod(L1) there must exist a model M> € Mod(Lz) such that Ssig(z,,)(M2|s) =
M.
e consequence-conservative, for each Sig(L1)-sentence ¢, if Ms |= o(asigr,)(¢)) then M1 = o.
e not-model-conservative, there must exist a model M; € Mod(L1) such that there is no model M> € Mod(L2)
such that SBsig(r,)(Ma|s) = M.

e not-consequence-conservative, there is a Sig(L1)-sentence ¢, such that Ms |= o(asign,)(p)) and M1 = ¢.

Semantics of refinement definitions

sem(I',RefinementDefinition) ="

If d is a RefinementDefinition,
sem(I,d) =T"
where IV =T'[d.interpretationName — (G, o, N1, N2)] and sem(T',d.refinement) = (G, o, N1, N2).

Semantics of interpretation types

’ sem(T', InterpretationType) = ((N1,Z1, X1, M1, A1), (N2, Iz, Yo, M2, As)) ‘

If tis an InterpretationType,
sem(T',t) = (L1, L2)
where
e Name(L;) = Name(t.oms) and Name(Lz) = Name(t.oms2),
e (Inst(L1),Sig(L1),Mod(L1), Th(L1)) = sem(T', t.oms),
e (Inst(L2),Sig(L2),Mod(L2), Th(L2)) = sem(T', t.oms2),
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Semantics of refinements

‘ sem(I',Refinement) = ((G1,G2),0, M) ‘

The signature of a refinement is a pair consisting of the graph of the OMS or network of OMS being refined and the graph
of the OMS or network of OMS after refinement. Together with this pair the mapping is stored along which the refinement
is done. Given two networks G1 and Ga, a network morphism o : G1 — G2 is

1. a functor ¢ : Shape(G1) — Shape(Gsz), together with
2. a natural transformation o™ : G1 — O'G; Go
such that
1. for each node N; in G; labeled with (Z1, %1, M;) such that ¢©(N;) is a node Ny labeled with (Zz, X2, M) in Gs,
there is a signature morphism (p¥,,on,) : (Z1,$1) — (Z2, £2), where

2. pN, = (®,a, ) : Ty — T is an institution comorphism between the logics of the two nodes and oy, : ®(X1) — X is
a signature morphism, such that ﬂgl(M2|U%1 ) € M for each My € Mo.
1

A refinement model is a class M of pairs of families of models compatible with the two networks. Given a network
morphism o : G1 — G2 and a G2 model F, F|, is defined as the family of models {M;};c Nodes(c,) such that M; = F o ;)| m
for each i € Nodes(G1).

If r is RefinementOMS,
sem(l', r) = (G, G),0, M)
where

e (G is a graph with just one isolated node N such that Name(N) = Name(r.oms) and the other elements of the tuple
labeling L are given by sem(I, r.oms),
e o is the identity morphism on Sig(r.oms),
e M={((M),(M))]| M € Mod(r.oms)}, where (M) is the singleton family consisting of M.
If r is RefinementNetwork,
sem(I,r) = ((G,G),0, M)
where sem(T', r.network) = G, o is the identity network morphism on G and M = {(F, F) | F' € Mod(G)}.
If r is RefinementComposition,
sem(T,r) = ((G1,G3), 0, M)
where
sem(I',r.refinement) = ((G1,G1), 01, M1), sem(T,r.refinement2) = ((Gz, G3), 02, Mz) such that G} = G2, 0 = 01502
is a network morphism from G to G5, and M = {(Fi, F3) | 3F: such that (F1, F») € M, and (F2, F3) € Ma}
If r is SimpleOMSRefinement,
sem(T',r) = ((G, G2),0, M)
where
semM(Rr.oms) = (71, X1, M1, Ay),
sem(T,r.refinement) = ((G1,G2), (p2,02), M’) such that G consists of an isolated node labeled with (Zz, X2, M2, Asz),
sem(T, (Z1,%1), (Z2,%2), r.omsRefinementMap) = (p1 = (D, a, B) : 1 — T, 01 : D(X1) — 3a),
for each (My, M2) € M, B, (Mi|o,) € My,
G consists of an isolated node labeled with sem™ (T, r.oms),
o = (p1,01); (p2,02) and M = {(Bs, (Milo,), M2) | (M1, M2) € M'}.
If r is SimpleNetworkRefinement,
sem(T,7) = ((G1,G2),0, M)
where
sem™ (I, r.network) = Gi,
sem(T,r.refinement) = ((G1, G2), 02, M’),
sem(T, G1, G2, r.networkRefinementMap) = o1 : G1 — GY,
0 = 01; 02 is a network morphism and M = {(F|o, F2) | (F1, F2) € M'}.

Semantics of OMS refinement maps

‘ sem(T, (I1,%1), (I2,X2), OMSRefinementMap) = (p, o) ‘

If m is an OMSRefinementMap,
sem(T, (I1,%1), (I2,%2),m) = ((?,, B),0)
where
sem(T',m.omsLanguageTranslation) = (®,«, ) : Z; — Z5 such that 7] = Z; and Ty = I,
and sem(T.current = (lang’, logic’, ser’), ®(Z1), L2, m.symbolMap) = ¢ : ®(X1) — Lo where I'.current = (lang, logic, ser),
logic is the target logic of (®, «, 8), and lang’ and ser’ are the default language and serializations for logic'.
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Semantics of network refinement maps

‘ sem(T", G1,G2,NetworkRefinementMap) = o : G1 — G2 ‘

If m is a NetworkRefinementMap,

sem(T', G1,G2,m) = sem(I', G1, G2, m.node M ap)

Semantics of sets of node maps

’ sem(T", G1, G2, Set(NodeMap)) = o : G1 — G2 ‘

If m1,...,m, are all NodeMaps,
sem(T, G1, G2, Set{m1,...,my,}) =0:
where
sem(T', G1, Go,m1) = (namel, names, p1,01), ...
sem(T, G1, G2, my) = (namet, namey, pn,oy) and
% (nametl) = name) and o = (pi,05) for each i = 1,...,n. The map is required to be total on the nodes of G;.

namej

Semantics of node maps

‘ sem(T", G1,G2,NodeMap) = (namer, names, p, o) ‘

If m is a NodeMap,
sem(I',G1,G2,n) = (m.omsName, m.omsName?2, p, o)

where

(71,31, M) is the label of m.omsName in G,

(Z2, 32, M3) is the label of m.omsName?2 in G2,

sem(I';m.omsLanguageTranslation) = p = (®,, ) : 71 — Io,

sem(T.current = (lang’,logic , ser’), ®(31), X2, m.symbolMap) = o : ®(X1) — o, where .current = (lang, logic, ser),
logic' is the target logic of (®, a, 3) and lang’ and ser’ are the default language and serialization for logic’.

Semantics of entailment definitions

sem(I',EntailmentDefinition) =I"

If eis an EntailmentDefinition,
sem(T,e) =T"

where IV = I'[e.entailmentName > sem(T,e.entailmentType)].

Semantics of entailment types

‘ sem(I',EntailmentType) = (G,id, L2, L1) ‘

If ¢t is an OMSOMSEntailment,
sem(T',t) = Lo i L

where Name(L;) = Name(¢.oms), Name(L2) = Name(t.oms2),
(Inst(L1),Sig(L1),Mod(L1), Th(L1)) = sem(T',t.oms), (Inst(Lz),Sig(L2), Mod(Lz2), Th(Lz2)) = sem(T',t.oms2) such that
Sig(L1) = Sig(L2) and Mod(L1) C Mod(L2) and ¢d is the identity morphism on Sig(L1).

If t is a NetworkOMSEntailment, sem(I',t) = G
where sem (T, t.network) = G’ such that G’ contains a node n labeled with Name(¢.omsName), sem (T, t.oms) = (Z,Z, M2, As)
and {M,, | M is compatible with G’} C M3. Then G extends G’ with a new node whose label has the name Name(t.oms)
and the other components given by sem(I, t.oms) and with a new theorem link from this new node to the node Name(t.omsName),
labeled with the identity morphism on 3.

If t is a NetworkNetworkEntailment,

sem(I,t) = G

where sem(T',t.network) = G, sem(I',t.network2) = Ga, such that Shape(G1) = Shape(Gz) and, for each node i €
|Shape(Gh)|, its names in the networks G1 and G5 are the same, its signatures are the same and the class of models obtained
by projecting each family of models compatible with G1 to the component ¢ is included in the class of models obtained by
projecting each family of models compatible with G2 to the component 7. Then G extends the union of G; and G» for each
pair of nodes (41, i2), where 41 and i2 identify the occurrences of the same node ¢ in G; and G2 respectively, with a theorem
link from 41 to i2 labeled with the identity on Sig(i1).
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Semantics of equivalence definitions

sem(T',EquivalenceDefinition) =T"

If d is an EquivalenceDefinition,
sem(T',d) =T"

where I = T'[d.equivalenceName — sem(T,d.equivalenceType)].

Semantics of OMS equivalences

‘sem(F,OMSEquivalence) = (G, N1, Ny) ‘

If t is an OMSEquivalence,
sem(T',t) = (G, N1, N2)

where O; = t.oms, Oz = t.oms2, O3 = t.oms3, sem%s‘ilif,?gl&gls;i(ig%)fs%(03) =(Z,2,M,A)
G is the graph N; 23 N3 & N3 where
1. N, is labeled with (Name(O1),Inst(O1),Sig(O1), Mod(O1), Th(O1)),
2. N, is labeled with (Name(O;),Inst(O2),Sig(O2), Mod(O2), Th(O2)) and
3. N3 is labeled with (Name(O3),Z, %X, M, A)
such that
1. ¢; : Sig(O;) — X are signature inclusions,
2. Inst(0;) = Inst(O2) = Inst(O3) and
3. for each i = 1,2 and each model M; € Mod(O;) there exists a unique model M € M such that M|siz0,) = M;.

Semantics of network equivalences

‘ sem(I',NetworkEquivalence) = (G1,G2,G3) ‘

If t is a NetworkEquivalence,

sem(F, t) = (G1, GQ, Gg)

where n; = t.network, ny = t.network2, ng = t.network3, sem(I',n1) = G1, sem(I',n2) = G2, sem(I',n3) = G3 such
that G1 and G2 are subgraphs of G3 and for each ¢ = 1,2 and each family of models M; compatible with G; there is a
unique family of models M compatible with G3 such that the projection of M to the nodes in G; is M;.

Semantics of module relation definitions

sem(T',ModuleRelDefinition) =T’

If d is a ModuleRelDefinition,
sem(I,d) =T"
where O = d.oms, O> = d.oms2, ¢ = d.conservativityType, & = sem([,d.interfaceSignature), I = I'[d.moduleName
(G,t, N2, N1)] and G is the graph N; - No where N; is labeled with (O1,Inst(O;),Sig(O1), Mod(O1), Th(O1)), N2 with
(O2,Inst(02), Sig(02), Mod(O2), Th(O2)), and ¢ is an inclusion, when ¥ C Sig(O2) C Sig(O1) and if ¢ =%mcons and for
each M € Mod(O;) there is a model M’ € Mod(O1) such that M'|s = M]|x, or if ¢ =%ccons and for each ¢ € Sen(X),
01 = ¢ implies O2 = ¢.

Semantics of alignment definitions

sem(I',AlignmentDefinition) =T

If d is an AlignmentDefinition,
sem(I,d) =T"

where sem(T',d.alignmentType) = (L1, L2) and I" = T'[d.AlignmentName — (G, id, L1, L2)],
where (L}, L) = sem(T', L1, Lo,d.alignment Semantics) and
G = sem(T, LY, L, d.alignmentCardinalityPair,d.alignment Semantics, d.correspondence).
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Semantics of alignment types

‘sem(F,AlignmentType) = (L1, L2) ‘

If t is an AlignmentType
sem(T',t) = (L1, L2)

where L; is a node label whose name is Name(t.oms) and whose other components are given by sem(I', t.oms) and similarly,
Lo is a node label whose name is Name(t.oms2) and whose other components are given by sem (T, t.oms2).

Semantics of alignments

‘ sem(T", L1, Lo, Set(AlignmentCardinalityPair),AlignmentSemantics, Set(Correspondence)) = G ‘

If card is a set of AlignmentCardinalityPairs, sem an AlignmentSemantics and C = Set{ci,...,cn} a set of
Correspondences,
sem(T', L1, Lo, card, sem,C) = G

where
if at least one of the correspondences ci, ..., c, has a confidence value different than 1, then the semantics of the alignment
is not defined, and the alignment is ill-formed if the alignment mapping does not have the arities given by card, otherwise

G is a W-shaped graph as below
L1 Lp Lo
oo Lo
L1 o1
Lg Ly

where Lp, Ls and L; are built in a logic-specific way from the correspondences Ci,...,Cy taking into account sem. [I3]
illustrates how this construction works in the case of OWL, in a way that can be generalized to other logics.

sem(T, L1, La,Alignment Semantics) = (L}, L}) ‘

If sis an AlignmentSemantics,

sem(T, L1, Lo, s) = (rel(L1),rel(Lz))
where

i) L if s = global-domain
re =
relativize;ogic(r.current) (L)  otherwise

where the relativization procedure is logic-specific. An example of this is done for OWL can be found in [I3].
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A. Annex: DOL Ontology

(Normative)

This annex specifies the DOL Ontology, an RDF vocabulary that implements the terms and definitions from clause [
Part of the background and design considerations of the DOL Ontology can be found in [47].

A.1. Normative State and Normative References

The canonical namespace IRI for the DOL Ontology is http://www.omg.org/spec/DOL/dol-language/. Normative
snapshots of the implementation are published there. The IRI for the version of the DOL Ontology that corresponds to this
version of the OMG standard is http://www.omg.org/spec/DOL/20150801/dol-language/.

The DOL Ontology is currently implemented in OWL 2 (W3C/TR REC-owl2-syntax:2009). The normative snapshots are
encoded in RDF /XML using the OWL 2 mapping to RDF graphs (W3C/TR REC-owl2-mapping-to-rdf:2012).

The ontology makes use of the following standard ontologies and vocabularies:

e DCMI Metadata Terms (DCMI Metadata Terms:2012)
e OMG Specification Metadata (SM) Vocabulary (OMG Specification Metadata:2014)
e SKOS (W3C/TR REC-skos-reference:2009)

The sources of the DOL ontology are being maintained in OWL Manchester syntax [28] at https://ontohub.org/
meta/dol-ontology.omn.
It is intended to implement future versions of the DOL ontology as a DOL document in DOL.

A.2. Intended Applications of the DOL Ontology

Applications of the DOL Ontology include modeling statements about OMS in RDF, e.g., when annotating OMS, or when
describing new conforming logics, OMS languages, serializations, translations, etc., in the registry of DOL-conforming lan-
guages and translations detailed below in clause [A4]

A.3. Classes and Object Properties of the DOL Ontology

The classes in the DOL Ontology (and their annotations) correspond to the terms (and their definitions) in clause 4] Classes
that are reifications of relations also have been introduced as object properties. All classes and object properties are assumed
to be in the DOL Ontology namespace unless stated otherwise. The DOL Ontology additionally contains some top-level
abstract classes as follows:

This reflects central issues in the structure of DOL: while DOL, as a language, is a linguistic entity, it is related to
mathematical entities like logics, signatures and models through its semantics. That is, semantic entities provide the bridge
bewteen linguistic and mathematical entities. Moreover, processes (like theorem proving) provide algorithmic procedcures
for manipulating DOL librares, and tools implement these in software.

Below the top-level classes, the class structure is as follows:

‘mathematical entity’

7


http://www.omg.org/spec/DOL/dol-language/
http://www.omg.org/spec/DOL/20150801/dol-language/
https://ontohub.org/meta/dol-ontology.omn
https://ontohub.org/meta/dol-ontology.omn

'0MS docurnentati o)

C_’ollectlon of expresslon;-

S <

Annex:

DOL Ontology

on'

-'non-logical symbol‘\k

— —
'guery language'
e i

q_‘ftjndoff mar_;))-

Tiset of nen-logical symbal

(‘Ianguaqe aspect’ i
— — — —
. 'logical language aspect’
=&/ —

'abstract syntax'\}
I

'OMS netwoﬁ

oL lbrary
(oo >

'sequence of correspondence

— —
corresponder e )

'OMS mapping'

'syrmbel map item_"‘)-

— ———
sequence of OMS' D)

L

— =
'‘DOL docume@

mative document )

. *annotation expression language as|
— s

-a —_— —

'structuring language aspe&D

78

s

o)

/approxim@

C h_:imogeneous Ol\f/,

'elusive O MS'\>
_ R

/_,_i.s:a

'/speciﬁcatia

ontologﬁ-

('MDE mode|>

(G\eterogeneous o M?)

‘inconsistent OMS*
_—

‘unsatisfiable OMS*

- -

'satisfiable OMS'

"\e‘nfal\mea

Cextension mappi _;?

g
— -

'\_s_ubstrtutu:rl

I\Sc_qunralenfb

'\Eﬁneme-r:g)

&



A. Annex: DOL Ontology

el expansive map|
- s

eakly exact mapping Z——

< supports relatim)-

is-, — —

. “formal semantics' )
e . —_— = 15, — i
{ Thm@‘ﬂ—‘Sﬁ—QEemantlc entity' -%___— .

[ 'oMs Semantic objf_c_tl)

S
' 8 Ty
_semantlc domaln_/

i o s

_—

resource |
v SN~ i, —
| Thirg ‘web entity’
e \Jveb entes T
( 'linked dat
Crtad ity

— .
Qmodule extraction’ )

C:Ttranslation [proces;F_>

— —
'theorem proving'
_— o [ __j/

\:_model ﬂnding)

nhﬂ—@—Qrocess

matchin_;:l
-

79



A. Annex: DOL Ontology
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The top level object properties are structured in a way similar to that of the top-level classes:

V- mtopObjectProperty
> m’has part’
- m'has proficiency’
- m'is linguistically related to’
b m'is mathematically related to’
I@------'is related as part of maps to'
b m'is seamantically related to'

A.4. DOL Registry

It is expected that DOL will be used for other languages than the set of DOL-conforming languages that are discussed
in this OMG Specification. There is a registry for DOL-conforming languages and translations hosted at http:
//purl.net/DOL/registry. The registry also includes descriptions of DOL-conforming languages and translations (as
well as other information needed by implementors and users) in both human-readable and machine-processable form.

There will be Maintenance Authority (MA) or, depending on advisability, a Registration Authority established to maintain
the registry as an informative resource governed by the standard. The registry contents itself will not be normative; however,
it is expected to become the basis for normative activities.
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B. Annex: Conformance of OWL 2 DL With DOL

(Informative)

The semantic conformance of OWL 2 DL (as specified in W3C/TR REC-owl2-syntax:2009) with DOL is established in
58].

B.1. Conformance of the OWL Serializations With DOL
B.1.1. Text Conformance of the OWL 2 Manchester Syntax With DOL

The OWL 2 Manchester syntax satisfies the criteria for text conformance established in clause in a straightforward way
thanks to its line-based comment syntax (comments starting with #) and its flexible handling of line breaks.

B.1.2. Conformance of the XML and RDF Serializations of OWL With DOL

General Issues

With minor modifications detailed below, the OWL /XML serialization [30] satisfies the criteria for XML conformance and the
serialization of OWL in RDF (W3C/TR REC-owl2-mapping-to-rdf:2012) satisfies RDF the criteria for RDF conformance.
Both modifications define a super-language of the respective OWL serialization. Any OWL ontology serialization S’ in one
of these two super-languages can be translated into an OWL ontology serialization S that fully conforms to the original
specification OWL/XML or “OWL serialized in RDF” and is semantically equivalent to the extended serialization S’ with
regard to the semantics of OWL. Without these modifications, neither OWL/XML nor “OWL serialized in RDF” satisfies
the XML or RDF conformance requirements, respectively. The reason is that with imports there is a structural element
supported by OWL that cannot have identifiers, and that these two OWL serializations do not permit the use of XML or
RDF constructs that would enable assigning identifiers to imports.

XML Conformance of a Modified OWL/XML With DOL

In the OWL /XML serialization, the Import element is only allowed to carry the attributes zml:base, zml:lang and zml:space,
but no further attributes or child elements from foreign namespaces (requirement ), and therefore in particularly not a
dol:id attribute or child elements, as would be required for adding identifiers (cf. clause [0.8).

An extended specification of OWL/XML that does allow the dol:id attribute on Import satisfies the XML conformance
criteria. From an ontology serialized in this super-language of OWL/XML, one can obtain a semantically equivalent ontology
(with regard to the semantics of OWL) by stripping all dol:id attributes.

RDF Conformance of a Modified Serialization of OWL in RDF With DOL

The serialization of OWL in RDF (regardless of the concrete RDF serialization employed to serialize the RDF graph that
represents the OWL ontology) does not satisfy requirement for RDF conformance because there is an owl:imports
property but no class representing imports. Therefore, it is not possible to represent a concrete import, of an ontology O
importing an ontology O, as an RDF resource. However, only resources can have identifiers in RDF. RDF reification would
allow for turning the statement O; owl:imports O into a resource and thus giving it an identifier. However, the RDF
triples required for expressing this reification, including, e.g., the triple :import_id rdf:predicate owl:imports,
would not match the head of any rule in the mapping from RDF graphs to the OWL structural speciﬁcatiorEl They
would thus remain left over in the RDF graph that is attempted to be parsed into an OWL ontology, and thus violate the
requirement that at the end of this parsing process, the RDF graph must be emptyﬂ

After extending the specification of the serialization of OWL in RDF in the following way, it satisfies the RDF conformance
criteria: if the input RDF graph G considered in section 3 of W3C/TR REC-owl2-mapping-to-rdf:2012 contains the pattern

¢t rdf:subject s
¢t rdf :predicate owl:imports
¢ rdf:object o .

IW3C/TR REC-owl2-mapping-to-rdf:2012, section 3
2See the last sentence of section 3.2.5 of W3C /TR REC-owl2-mapping-to-rdf:2012
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and thus introduces a resource 7 to represent that the ontology s imports the ontology o, these three triples are removed
from G. From an ontology serialized in this super-language of the serialization of OWL in RDF, one can obtain semantically
equivalent ontologies (with regard to the semantics of OWL) by stripping all triples whose predicate is rdf:subject, rdf:predicate
or rdf:object, or by adding triples that declare these three properties to be annotation properties.

B.2. Conformance of the SROZQ Logic With DOL

The logic SROZQ underlying OWL can be formalized as an institution as follows:

Definition 13 OWL 2 DL. OWL 2 DL is the description logic (DL) based fragment of the web ontology language OWL.
First, the simple description logic ALC is discussed, afterward the approach is generalized to the more complex description
logic SROZQ, which is underlying OWL 2 DL. Signatures of the description logic ALC consist of a set A of atomic concepts,
a set R of roles and a set T of individual constants. Signature morphisms are tuples of functions, one for each signature
component. Models are first-order structures I = (A”,.7) with universe AT that interpret concepts as unary and roles as
binary predicates (using 7). Iy < I if AT = A™ and all concepts and roles of I are subconcepts and subroles of those in
I>. Sentences are subsumption relations Ci1 E Ca between concepts, where concepts follow the grammar

C::=A|T|L|C1U02‘01|_|02|—‘C|VR.C|3R.C

These kind of sentences are also called TBoz sentences. Sentences can also be ABox sentences, which are membership
assertions of individuals in concepts (written a : C' for a € I) or pairs of individuals in roles (written R(a,b) for a,b €
Z,R € R). Satisfaction is the standard satisfaction of description logics.

The logic SROZQ [3])], which is the logical core of the Web Ontology Language OWL 2 D[EL extends ALC with the
following constructs: (i) complex role inclusions such as Ro S T S as well as simple role hierarchies such as R C S,
assertions for symmetric, transitive, reflezive, asymmetric and disjoint roles (called RBoz sentences, denoted by SR), as
well as the construct IR.Self (collecting the set of ‘R-reflexive points’); (ii) nominals, i.e. concepts of the form {a}, where
a € T (denoted by O); (i) inverse roles (denoted by T); qualified and ungualified number restrictions (Q). For details on
the rather complex grammatical restrictions for SROZQ (e.g. regular role inclusions, simple roles) compare [34)].

OWL profiles are syntactic restrictions of OWL 2 DL that support specific modeling and reasoning tasks, and which are
accordingly based on DLs with appropriate computational properties. Specifically, OWL 2 EL is designed for ontologies
containing large numbers of concepts or relations, OWL 2 QL to support query answering over large amounts of data, and
OWL 2 RL to support scalable reasoning using rule languages (EL, QL, and RL for short) .

The logic EL is underlying the EL profile. (To be ezact, EL adds various ‘harmless’ expressive means and syntactic sugar
to EL resulting in the DL EL ++.) EL is a syntactic restriction of ALC to existential restriction, concept intersection, and
the top concept:

C:=A|T|Ci11C2|3R.C

Note that EL does not have disjunction or negation, and is therefore a sub-Boolean logic. O

OWL itself is more complicated than SROZQ due to the presence of datatypes. Following the direct model-theoretic
semantics of OWL [67]:

Definition 14 A datatype map, formalizing datatype maps from the OWL 2 Specification [68], is a 6-tuple
D = (Npr,Nrs, Nrs, DT LS ‘FS)

with the following components:
e Npr is a set of datatypes (more precisely, names of datatypes) that does not contain the datatype rdfs:Literal.

e Nis is a function that assigns to each datatype DT € Npr a set Nps(DT) of strings called lezical forms. The set
Nps(DT) is called the lexical space of DT.

e Nrs is a function that assigns to each datatype DT € Npr a set Nps(DT) of pairs (F,v), where F' is a constraining
facet and v is an arbitrary data value called the constraining value. The set Nps(DT) is called the facet space of DT.

e For each datatype DT € Npr, the interpretation function -P7 assigns to DT a set (DT)PT called the value space of
DT.

e For each datatype DT € Npr and each lexical form LV € Npgs(DT), the interpretation function -“° assigns to the
pair (LV, DT) a data value (LV, DT)*S € (DT)PT.

e For each datatype DT € Npr and each pair (F,v) € Nrps(DT), the interpretation function -
set (F,v)FS c (DT)PT.

FS assigns to (F,v) the

3See also http://www.w3.org/TR/owl2-overview/
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The set of datatypes Npr of a datatype map D is not required to contain all datatypes from the OWL 2 datatype map;
this allows one to talk about subsets of the OWL 2 datatype map, which may be necessary for the various profiles of OWL 2.
If, however, D contains a datatype DT from the OWL 2 datatype map, then Nps(DT), Nrs(DT), (DT)PT, (LV, DT)*5
for each LV € Nrs(DT), and (F,v)"S for each (F,v) € Nps(DT) are required to coincide with the definitions for DT in
the OWL 2 datatype map. O

Given two datatype maps D = (Npr, Nis, Nps,-P7,-L5 .FS) and D' = (NbT7N’LS7N1'wS7~DT’7~LS/,~FS'), we write
D C D' if Npr C Npr, and the other components of D are restrictions (as functions) of those of D’.

Definition 15 A vocabulary V = (Ve,Vor,Vor, Vi, Vor,Vir,Vra) over a datatype map D is a 7-tuple consisting of the
following elements:

O

Vo is a set of classes as defined in the OWL 2 Specification [68], containing at least the classes owl:Thing and
owl:Nothing.

Vop is a set of object properties as defined in the OWL 2 Specification [68], containing at least the object properties
owl:top ObjectProperty and owl:bottom ObjectProperty.

Vbp is a set of data properties as defined in the OWL 2 Specification [68], containing at least the data properties
owl:topDataProperty and owl:bottomDataProperty.

Vr is a set of individuals (named and anonymous) as defined in the OWL 2 Specification [68].

Vpr is a set containing all datatypes of D, the datatype rdfs:Literal, and possibly other datatypes; that is, Npr U
{rdfs:Literal} C Vpr.

Vir is a set of literals LVPT for each datatype DT € Npr and each lezical form LV € Nps(DT).

Vra is the set of pairs (F,lt) for each constraining facet F, datatype DT € Npr, and literal It € Vir such that
(F,(LV,DT\)*®) € Nps(DT), where LV is the lexical form of It and DTy is the datatype of It.

Definition 16 Given a datatype map D and a vocabulary V over D, an interpretation

I = (ALAD, .07.OP7 'DP, .17 'DT7 .LT7 FA,NAMED)

for D and V is a 10-tuple with the following structure:

o .C©

Ar is a nonempty set called the object domain.
Ap is a nonempty set disjoint with A; called the data domain such that (DT)PT C Ap for each datatype DT € Vpr.
is the class interpretation function that assigns to each class C € Vo a subset (C)C C Ay such that
— (owl:Thing)® = A; and
— (owl:Nothing)® = 0.
-OF s the object property interpretation function that assigns to each object property OP € Vop a subset (OP)°F C
A1 X A1 such that
— (owl:topObjectProperty)°T = A; x A and
— (owl.'bottomObjectProperty)OP =0.
PP s the data property interpretation function that assigns to each data property DP € Vpp a subset (DP)DP -
A1 x Ap such that
— (owl:topDataProperty)DP =A; X Ap and
— (owl:bottomDataProperty)®" = (.
T s the indwvidual interpretation function that assigns to each individual a € Vi an element (a)I e Ar.
DT s the datatype interpretation function that assigns to each datatype DT € Vpr a subset (DT)PT C Ap such that
— DT 45 the same as in D for each datatype DT € Npr, and
— (rdfs:Literal) ®T = Ap.
LT s the literal interpretation function that is defined as (It)*T = (LV,DT)YS for each It € Vi, where LV is the
lezical form of It and DT is the datatype of It.
FA s the facet interpretation function that is defined as (F,1t)74 = (F, (1t)*T)FS for each (F,lt) € Vra.

NAMED s a subset of Ar such that (a)l € NAMED for each named individual a € V7.

The institution SROZQ(D) underlying OWL is now defined as follows:

Definition 17 e An SROZQ(D) signature is a pair (D,V), where D is a datatype map and V a vocabulary over D.
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e Given SROZQ(D) signatures (D,V) and (D',V'), a SROZQ(D) signature morphism o: (D,V) — (D', V') only
exists if D C D’. In this case, such a signature morphism consists of
— amap oc: Ve — VL,
— a map oop: Vor — Vp,
— a map opp: Vpp — Vip,
— amapor: Vi = V/,
— a map opr: Vpr — V) that is the identity on Npr U {rdfs:Literal},
—amaporr: Vir = Vip
e The sentences for a signature are definded as in the direct model-theoretic semantics of OWL [67]]. Sentence translation

18 substitution of symbols.

e (D,V)-models are interpretations for D and V. (D, V)-model morphisms are maps between the domains Aj preserving
membership in classes and properties, where Ap is mapped identically. Model reducts are built by first translating along
the signature morphism and then looking up the interpretation in the model to be reduced.

e The satisfaction relation is defined as in direct model-theoretic semantics of OWL [67].
O

Remark: strictly speaking, the institution defined above is OWL 2 DL without restrictions in the sense of [72]. The reason
is that in an institution, the sentences can be used for arbitrary formation of theories. This is related to the presence of
DOL’s union operator on OMS. OWL 2 DL’s specific restrictions on theory formation can be modeled inside this institution,
as a constraint on OMS. This constraint is generally not preserved under unions or extensions. DOL’s multi-logic capability
allows the clean distinction between ordinary OWL 2 DL and OWL 2 DL without restrictions.
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C. Annex: Conformance of Common Logic with DOL

(Informative)

The semantic conformance of Common Logic (as specified in ISO/IEC 24707:2007) with DOL is established in [58].

The XCF dialect of Common Logic has a serialization that satisfies the criteria for XML conformance. The CLIF dialect
of Common Logic has a serialization that satisfies the criteria for text conformance.

Common Logic can be defined as an institution as follows:

Definition 18 Common Logic. A common logic signature X (called vocabulary in Common Logic terminology) consists
of a set of names, with a subset called the set of discourse names, and a set of sequence markers. An signature morphism
maps names and sequence markers separately, subject to the requirement that a name is a discourse name in the smaller
signature if and only if it is one in the larger signature. A ¥-model I = (UR, UD, rel, fun,int, seq) consists of a set UR, the
universe of reference, with a non-empty subset UD C UR, the universe of discourse, and four mappings:

e rel from UR to subsets of UD* = {< z1,...,%n >| 21,...,2n € UD} (i.e., the set of finite sequences of elements of
UD);

e fun from UR to total functions from UD* into UD;
e int from names in ¥ to UR, such that int(v) is in UD if and only if v is a discourse name;
e seq from sequence markers in X to UD™.

A Y-sentence is a first-order sentence, where predications and function applications are written in a higher-order like syntaz:
t(s). Here, t is an arbitrary term, and s is a sequence term, which can be a sequence of terms ti ... tn, or a sequence marker.
A predication t(s) is interpreted by evaluating the term t, mapping it to a relation using rel, and then asking whether the
sequence given by the interpretation s is in this relation. Similarly, a function application t(s) is interpreted using fun.
Otherwise, interpretation of terms and formulae is as in first-order logic. A further difference to first-order logic is the
presence of sequence terms (namely sequence markers and juztapositions of terms), which denote sequences in UD™, with
term juztaposition interpreted by sequence concatenation. Note that sequences are essentially a non-first-order feature that
can be expressed in second-order logic.

Model reducts are defined in the following way: Given a signature morphism o : X1 — X2 and a 32-model Io =
(UR, UD, rel, fun, int, seq), I|c = (UR, UD, rel, fun, int o o, seq o 7).

Given two CL models I1 = (UR1, UD1, rel1, funy, int1, seq;) and I = (UR2, UD2, rela, fun,, inta, seq,), a homomorphism
h: I — I is a function h : UR1 — UR2 such that

e h restricts to k : UD1 — UD2,
e for each x € URy and s € UD7, if s € reli(z), then k™(s) € relg(h(x)ﬂ
e for each x € UR1, ko fun,(z) = funy(h(z)) o K,
e for each name n in X, int2(n) = h(int1(n)),
e for each sequence marker n in X, seqy(n) = k*(seq, (n)).
CL "is the restriction of CL to sentence without sequence markers. O
Note that Common Logic also includes sentence formation constructs like c1:imports that in DOL terms belong to the

structuring language. They have been omitted from the institution, because they must not occur in basic OMS. They can
occur in structured native OMS, however, and need to be flattened out in order to obtain a theory in the CL institution.

Lk* is the extension of h to sequences.
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D. Annex: Conformance of RDF and RDF Schema with
DOL

(Informative)

The semantic conformance of RDF Schema (as specified in W3C/TR REC-rdf-schema:2014) with DOL is established in
[58].
The way of representing RDF Schema ontologies as RDF graphs satisfies the criteria for RDF conformance.

Definition 19 (RDF and RDF Schema) The institutions for the Resource Description Framework (RDF) and RDF Schema
(also known as RDFS), respectively, are defined following [50]. Both RDF and RDFS are based on a logic called bare RDF
(SimpleRDF ), which consists of triples only (without any predefined resources).

A signature Rs in SimpleRDF is a set of resource references. For sub,pred,obj € Rs, a triple of the form (sub, pred, obj)
is a sentence in SimpleRDF, where sub, pred, obj represent subject name, predicate name, object name, respectively. An
Rs-model M = (R, P, Sm, EXTy) consists of a set Ry, of resources, a set Pm C Ry, of predicates, a mapping function
Sm : Rs = Rm, and an extension function EXT,, : Py — P(Rm X Rm) mapping every predicate to a set of pairs of
resources. Satisfaction is defined as follows:

M Er, (sub,pred,obj) < (Sm(sub), (Sm(obj)) € EXTp(Sm(pred)).

Both RDF and RDFS are built on top of SimpleRDF by fizing a certain standard vocabulary both as part of each signature
and in the models.

Actually, the standard vocabulary is given by a certain theory. In case of RDF, it contains e.g. resources rdf:type and
rdf:Property and rdf:subject, and sentences like, e.g.

(rdf:type, rdf:type, rdf:Property),

and
(rdf:subject, rdf:type, rdf :Property).

In the models, the standard vocabulary is interpreted with a fized model. Moreover, for each RDF-model M = (R, Pm, Sm, EXTh),
if p € P, then it must hold (p, Sm(rdf:Property)) € EXTp(rdf:type). For RDFS, similar conditions are formulated
(here, for example also the subclass relation is fized).

In the case of RDFS, the standard vocabulary contains more elements, like rdfs:domain, rdfs:range, rdfs:Resource,
rdfs:Literal, rdfs:Datatype, rdfs:Class, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:member, rdfs:Container,
rdfs:ContainerMembershipProperty.

There is also OWL Full, an extension of RDFS with resources such as owl:Thing and owl :oneOf, tailored towards the
representation of OWL [29]. O
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E. Annex: Conformance of UML class and object
diagrams with DOL

(Informative)

This informative annex demonstrates conformance of a subset of UML class and object diagrams with DOL by defining
an institution for both. The subset is restricted to the static aspects of class diagrams; that is, change of state is ignored.
This means that all operations are query operations.

The institution of UML class and object diagrams is defined using a translation of UML class diagrams to Common Logic,
following the fUML specification and [73].

E.1. Preliminaries

The axioms for primitive types are imported from the fUML specification, section 10.3.1: Booleans, numbers, sequences and
strings. These axiomatize (among others) predicates corresponding to primitive types, e.g. buml :Boolean, form: Number,
form:NaturalNumber, buml: Integer, form: Sequence, form:Character, and buml:String.

The following infrastructure, consisting off a number of predicates axiomatized in Common Logic, provides a foundation
for an institution for UML class diagrams described in the later sections of this Annex.

logic CLIF

oms pairs

(forall (x y) (= (form:first (form:pair x y)) X))
(forall (x y) (= (form:second (form:pair x vy)) vy))
(forall (x y) (form:Pair (form:pair x y)))
(forall (p) (if (form:Pair p)
(= (form:pair (form:first p) (form:second p)) p)))
end

oms sequences =
fuml:sequences.clif and pairs
then
// fuml:sequence - membership of an element in a sequence
(forall (x s)
(if (form:sequence-member x s)
(form:Sequence s)))

(forall (x s)
(iff (form:sequence-member x s)
(exists (pt)
(and (form:in-sequence s pt)
(form:in-position pt x)) )))

// selection of elements
(forall (o) (= (form:selectl o form:empty-sequence) form:empty-sequence))
(forall (o y s)
(= (form:selectl o (form:sequence-insert (form:pair o y) s))
(form:sequence-insert y (form:selectl o s))))
(forall (o x y s)
(if (not (= x 0))
(= (form:selectl o (form:sequence-insert (form:pair x y) s))
(form:selectl o s))))
(forall (o) (= (form:select2 o form:empty-sequence) form:empty-sequence))
(forall (o x s)
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(= (form:select2 o (form:sequence-insert (form:pair x o) s))
(form:sequence-insert x (form:select2 o s))))
(forall (o x y s)
(if (not (= y 0))
(= (form:select2 o (form:sequence-insert (form:pair x y) s))
(form:select2 o s))))

(forall (i s)
(= (form:n-select form:empty-sequence i s)
form:empty-sequence))
(forall (a 1 s t x)

(if (= (insert-i i x t) s)
(= (form:n-select (form:sequence-insert s a) 1 t)
(form:sequence-insert s (form:n-select a i t)))))
(forall (a i s t)
(if (not (exists (x) (= (insert—-1 1 x t) s)))

(= (form:n-select (form:sequence-insert s a) 1 t)
(form:n-select a 1 t))))

// insert element at i-th position
(forall (x s)

( (insert-i form:0 x s) (form:sequence-insert x s)))
(forall (i j x y s)
(if (form:add-one i 7)
(= (insert-i j x (form:sequence-insert y s))
(form:sequence-insert y (insert-i i x s)))))
end

oms sequences—-insert =
sequences then
// insertion of elements
(forall (x sl s2)
// inserting an element means...
(if (= (form:sequence-insert x sl) s2)
(and (form:Sequence sl)
(form:Sequence s2)
// the new element is at the first position
(form:in-position-count s2 form:1 x)
// and all other elements are shifted by one
(forall (nl n2 vy)
(if (form:add-one nl n2)
(iff (form:in-position-count sl nl vy)

(form:in-position-count s2 n2 y)))))))
// synonym
(forall (s) (= (form:sequence-length s) (form:sequence-size s)))
end
oms ordered-sets =
sequences with
form:Sequence |-> form:0rdered-Set,
form:empty-sequence |-> form:empty-ordered-set,
form:sequence-length |-> form:ordered-set-size,
form:same-sequence |-> form:same-ordered-set,
form:sequence-member |-> form:ordered-set-member,
form:in-sequence |-> form:in-ordered-set,
form:before-in-sequence |-> form:before-in-ordered-set,
form:position-count |-> form:ordered-set-position-count,
form:in-position-count |-> form:in-ordered-set-position-count

then
//Different positions contain different elements
(forall (s x1 x2 nl n2)
(if (and (form:in-ordered-set-position-count s nl x1)
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(form:in-ordered-set-position-count s n2 x2)
(= x1 x2))
(= nl n2)))
// insertion of elements
(forall (x sl s2)
(if (= (form:ordered-set-insert x sl) s2)
(and (form:0Ordererd-Set sl)
(form:0rdererd-Set s2)
// no element can be inserted twice
(forall (x s)
(if (from:ordered-set—-member x s)
(= (form:ordered-set—-insert x s) s)))
// inserting a new element
(forall (x s)
(if (not (from:ordered-set-member x sl))
(exists (s2)
(and (= (form:ordered-set—-insert x sl) s2)
// the new element is at the first position
(form:in-ordered-set-position-count s2 form:1 x)
// and all other elements are shifted by one
(forall (nl n2 vy)
(if (form:add-one nl n2)
(iff (form:in-ordered-set-position-count sl nl y)
(form:in-ordered-set-position-count s2 n2 vy)))))))

end
oms sets =
//An empty set has no members.
(forall (s)
(if (form:empty-set s)
(form:Set s)))
(forall (s)

(if (form:Set s)
(iff (form:empty-set s)
(not (exists (x)
(form:set-member x s))))))
//Size of sets
(forall (s n)
(if (form:set-size s n)
(and (form:Set s)
(buml:UnlimitedNatural n))))
(= (form:set-size form:empty-set) form:0)
(forall (x s)
(if (not (form:set-member x s))
(exists (n)
(and (form:add-one (form:set—size s) n)
(= (form:set-size (form:set—-insert x s))

n)))))

//The same-set relation is true for sets that have the same members.
// but: why not replace same-set with = ?
(forall (sl s2)
(if (form:same-set sl s2)
(and (form:Set sl)
(form:Set s2))))
(forall (sl s2)
(1ff (form:same-set sl s2)
(forall (x)
(iff (form:set-member x sl)
(form:set-member x s2)))))
//Insertion of elements into sets and set membership
(forall (x s)
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(1f (form:Set s)
(form:Set (form:set—insert x s))))
(forall (x y s)
(iff (form:set-member x (form:set-insert y s))
(or (= x y)
(form:set-member x s))))

end
oms bags =
//An empty bag has no members.
(forall (s)
(if (form:empty-bag s)
(form:Bag s)))
(forall (s)

(if (form:Bag s)
(iff (form:empty-bag s)
(not (exists (x)
(form:bag-member x s))))))
//Size of bags
(forall (s n)
(if (form:bag-size s n)
(and (form:Bag s)
(buml:UnlimitedNatural n))))
(= (form:bag-size form:empty-bag) form:0)
(forall (x s)
(exists (n)
(and (form:add-one (form:bag-size s) n)
(= (form:bag-size (form:bag-insert x s))

n))))

//The same-bag relation is true for bags that have the same members.

(forall (sl s2)
(if (form:same-bag sl s2)
(and (form:Bag sl)
(form:Bag s2))))
(forall (sl s2)
(iff (form:same-bag sl s2)
(forall (x)
(iff (form:bag-member-count x sl)
(form:bag-member—-count x s2)))))
//Insertion of elements into bags and bag membership
(forall (x s)
(if (form:Bag s)
(form:Bag (form:bag-insert x s))))
(forall (x y s)
(iff (form:bag-member x (form:bag-insert y s))
(or (= x vy)
(form:bag-member x s))))
//Member count
(forall (x s)
(if (form:Bag s)
(buml:UnlimitedNatural (form:bag-member-count x s))))
(= (form:bag-member-count form:empty-bag) form:0)
(forall (x s)
(exists (n)
(and (form:add-one (form:bag-member-count x s) n)
(= (form:bag-member-count x (form:bag-insert x s))
n))))
(forall (x y s)
(if (not (= x vy))
(= (form:bag-member-count x (form:bag-insert y s))
(form:bag-member—-count x s))))
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end

oms collection-types =
sequences-insert and ordered-sets and sets and bags

then
//bag to set
(forall (b)

(if (form:Bag s)
(form:Set (form:bag2set b))))
(= (form:bag2set form:empty-bag) form:empty-set)
(forall (x b)
(if (form:Bag Db)
(= (form:bag2set (form:set-insert x b))
(form:bag-insert x (form:bag2set b)))))

//sequence to ordered set
(forall (s)
(1f (form:Sequence s)
(form:0rdered-Set (form:seqg2ordset s))))
(= (form:seg2ordset form:empty-sequence) form:empty-ordered-set)
(forall (x s)
(if (form:Sequence s)
(= (form:seg2ordset (form:sequence-insert x s))
(form:ordered-set—-insert x (form:seg2ordset s)))))

//sequence to bag
(forall (s)
(if (form:Sequence s)
(form:Bag (form:seg2bag s))))
(= (form:seg2bag form:empty-sequence) form:empty-bag)
(forall (x s)
(if (form:Sequence s)
(= (form:seg2bag (form:sequence-insert x s))
(form:bag-insert x (form:seg2bag s)))))

//ordered-set to set
(forall (b)
(if (form:0Ordered-Set s)
(form:Set (form:ordsetl2set Db))))
(= (form:ordset2set form:empty-ordered-set) form:empty-set)
(forall (x b)
(if (form:0Ordered-Set b)
(= (form:ordset2set (form:set—-insert x b))
(form:ordered-set—insert x (form:ordset2set b)))))

//sequence to set
(forall (s)
(if (form:Sequence s)
(form:Set (form:segZ2set s))))
(forall (s) (= (form:seg2set s) (form:ordset2set (form:seg2ordset s))))

// leq
(forall (x vy)
(iff (buml:leqg x vy)
(or (= x y)
(buml:less-than x vy))))
end

oms uml-cd-preliminaries =
collection-types and pairs
end

91



E. Annex: Conformance of UML class and object diagrams with DOL

E.2. Signatures

Class/data type hierarchies. A class/data type hierarchy (C,<c) is given by a partial order where the set C' contains
the class/data type names, which are closed w.r.t. the built-in data types Boolean, UnlimitedNatural, Integer, Real, and String,
i.e., {Boolean, UnlimitedNatural, Integer, Real, String} C C; and the partial ordering relation <¢ represents a generalization
relation on C, where ¢ is a sub-class/data type of ¢z if ¢1 <¢ ca.

A class/data type hierarchy map v : (C,<¢) — (D,<p) is given by a monotone map from (C,<¢) to (D,<p), ie.,
v(c) <p v(c') if ¢ <¢ ¢, such that y(c) = c for all ¢ € {Boolean, UnlimitedNatural, Integer, Real, String}.

The collection type constructors OrderedSet, Set, Sequence, and Bag are used for representing the meta-attributes “ordered”
and “unique” of MultiplicityElement according to the following tableﬂ

H ordered [ not ordered
unique || OrderedSet Set
not unique Sequence Bag

The default is “not ordered” and “unique”.ﬂ
For a class/data type ¢ € C of a class/data type-hierarchy (C, <¢) and a collection type constructor

7 € {OrderedSet, Set, Sequence, Bag},

the expression 7[c|] denotes the induced collection type.

Let (C,<c¢) be a class/data type hierarchy.

— An attribute declamtionﬂ over (C,<c) is of the form c.p : 7[¢'] with ¢,¢’ € C, 7 a collection type constructor, and p an
attribute name. Additionally, an attribute may be composite and we write +cep : T[] if this fact plays a role. (Attributes
and association member ends are distinguished due to their different uses. In UML, both are of class Property.)

— A query operation declaration over (C,<c¢) is of the form c.q(z1 : mi[c1], ...,z : T[c;]) : 7[¢/] with ¢,c1,... ¢, €O, T
a collection type constructor, o an operation name, and x1,...,Z, parameter names.

— An association declaration over (C,<c¢) is of the form a(pi : mi[c1],...,pr : Tr[cr]) With r > 2, ¢1,...,¢r € C, T1,..., 7r
classifier annotations, a an association name, and p1, ..., p, member end names)’| An association declaration a = a(p: :
Ti[e1], ..., pr t Trler]) yields the property declarations a.p; : Ti[c;] for 1 < ¢ < r. An association declaration is binary if
r=2

— A composition declaration over (C,<c) is of the form m(p: : Set[c1],®p2 : T2[c2]) with ¢1,c2 € C, 72 a collection type
constructor, m a composition name, and p1, p2 member end names]’| A composition declaration m = m(p1 : Set[ci], ®p2 :
T2[c2]) yields the property declarations m.p; : Set[c1] and m.ps : T2[ca].

In UML, each Property may have AggregationKind composite. However, such an aggregation kind has no semantic meaning
when the property is not a member end of an association: the UML Superstructure Specification 2.4.1 does not mention the
aggregation kind in the description of the semantics of Property, and UML 2.5 explains the use of aggregations for Property as
“to model circumstances in which one instance is used to group together a set of instances” (p. 112, our emphasis). Moreover,
composite properties, i.e., properties with aggregation kind composite can only be member ends of binary associations (UML
Superstructure Specification 2.4.1, p. 37; UML 2.5, p. 228) and their multiplicity must not exceed one (UML Superstructure
Specification 2.4.1, p. 126; UML 2.5, p. 155). Thus, composition declarations are distinguished from general association
declarations.

Class/data type nets (Signatures). A class/data type net ¥ = ((C,<c¢),P,0,A, M) comprises a class/data type
hierarchy (C, <¢) and a set P of attribute declarations, a set O of operation declarations, a set A of association declarations
over (C,<¢), and a set M of composition declarations over (C, <¢), such that the following properties are satisfied:

— attribute names are unique along the generalization relation: if ci.p1 : 7i[c}] and ca.ps : T2[cy] are different property
declarations in P and c¢1 <¢ ¢z, then p1 # po;

— association and composition names are unique: if di and d2 are the names of two different association or composition
declarations in M U A, then di # do;

LCf. UML Superstructure Specification 2.4.1, p. 128; UML 2.5, p. 34.

2UML Superstructure Specification 2.4.1, p. 96; there does not seem to be default in UML 2.5.

3We separate attributes from association member ends due to their different uses. In UML, both are of class Property ([?, p. 109]).

4The member ends are ordered according to the UML Superstructure Specification 2.4.1, p. 29; UML 2.5, p. 197; hence they are
represented in a tuple-like notation.

50nly binary association may show member ends that are properties not owned by the association (UML Superstructure Specification
2.4.1, p. 37; UML 2.5, p. 218). The property declarations induced by a more than binary association result in a query operation.

6Composite properties, i.e., properties with aggregation kind composite can only be member ends of binary associations ([?, p. 218])
and their multiplicity must not exceed one {[?, p. 150]).
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— member end names are unique: if p1,...,p, are the member end names of an association declaration in A or a composition
declaration in M, then p; # p; for 1 <i# j < rﬂ

— the type of a member en(f| owned by a class/data type coincides with its declarations as attribute: We say that a property
declaration a.p; : 7;[c;] yielded by a binary association a = a(p1 : 7Ti[c1],p2 : T2[c2]) is owned by co € C, if c3—; <¢ co
and there is an attribute declaration co.p; : Ti[c;] € P; and similarly for property declarations yielded by composition
declarations, where the second end m.ps : 72[c2] of the composition declaration m = m(p1 : Set[ci], ®p2 : T2[c2]) has to be
composite, i.e., co®pz : T2[c2]. (Note that by the uniqueness of attribute names along the generalisation hierarchy only a
single attribute with name p; may exist.)

A class/data type net morphism o = (v, p,a,u) : £ = ((C, <), P,A, M) - T = ((D,<p),Q, B,N) is given by
— a class/data type hierarchy map ~ : (C, <¢) — (D, <p);

— an attribute declaration map ¢ : P — @ such that if p(c.p: 7[¢']) = d.q : 7'[d'] € Q, then d = v(c), d' = v(¢'), and 7 = 7';
furthermore, each composite attribute has to be mapped to a composite attribute.

— a query operation declaration map p : O — R such that if p(c.q(z1 : mi[c], ...,z : Toler]) : 7[C]) = dor(z1 2 7i[da), ... 20
7/dr]) : 7[d'] € R, then d = v(c), di = v(c;), d =~(¢'), 7/ = 7; and 7 = 7}
— an association declaration map « : A — B such that if a(a(p1 : Ti[c1],...,pr : 7rcr])) = b(qr : T1[da], ..., qs : Ti[ds]) € B,

then 7 = s and d; = y(¢;) and 7; = 7] for 1 < ¢ < r, and member ends owned by the association are mapped into owned
member ends;

— a composition declaration map p : M — N such that if u(m(p:1 : Set[ci], ®p2 : T2[c2])) = n(q1 : Set[d:1], g2 : T2[d2]) € N,
then di = ~y(c1), d2 = y(c2), and 72 = 75, and member ends owned by the composition are mapped into owned member
ends.

Class/data type nets as objects and class/data type net morphisms as morphisms form the category of class/data type
nets, denoted by CI.

For the example in Fig. [E.I| the class/data type net is

Classes/data types: Net, Station, Line, Connector, Unit, Track, Point, Linear,
Boolean, UnlimitedNatural, Integer, Real, String

Generalizations: Point < Unit, Linear < Unit

Properties: Line.linear : Set[Boolean], Track.linear : Set[Boolean],
Net.station : Set[Station], Net.line : Set|[Line],
Station.net : Set[Net], Station.unit : Set[Unit], Station.track : Set[Track],
Line.net : Set[Net], Line.linear : Set[Linear],
Connector.unit : Set[Unit],
Unit.station : Set[Station], Unit.connector : Set[Connector],
Track.station : Set[Station], Track.linear : Set[Linear],
Linear.track : Set[Track], Linear.line : Set[Line]
Associations: [2I(line : Set[Line], linear : Set[Linear]),
[2t(linear : Set[Linear], track : Set[Track]),
c2u(connector : Set[Connector], unit : Set[Unit])
Compositions: n2s(net : Set[Net], estation : Set[Station]),
n2l(net : Set[Net], #line : Set[Line]),
s2u(station : Set[Station], eunit : Set[Unit]),
s2t(station : Set[Station], strack : Set[Track])

Here all member ends are owned by class/data types.

E.3. Models

As stated above, models (in the sense of the term model defined in clause [4) of UML class diagrams are obtained via a
translation to Common Logic.
For a classifier net ¥ = ((C, <¢), K, P, M, A), a Common Logic theory C'L(X) is defined consisting of:

“In UML, member end names need not be unique. However, for (1) a simpler handling of selecting a particular member end in the
sentences and avoiding the use of number selectors, and (2) making the notion of member ends “owned” by a class/data type, this
constraint is added. An association declaration violating this uniqueness constraints can easily be transformed into an association
declaration satisfying it by decorating member end names with the numbers 1,... 7.

8 All member ends are instances of Property; UML Superstructure Specification 2.4.1, p. 36; UML 2.5, p. 206.
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Net
14
n2s n2|
2. i
Station Line
linear : Boolean
14 1
s2u s2t
Connector U Unit Track
14 1 linear : Boolean
T 1
Point Linear 12t
1.*
121
1
Figure E.1.: Sample UML class diagram.
o force C, a predlcattﬂ CL(c), such that
CL(BooIean) = buml: Boolean,

— CL(String) = buml:String,

— CL(Integer) = buml:Integer,

— CL(UnlimitedNatural) = form:NaturalNumber,

— CL(Real) = buml :Real,

— CL(c) = ¢, if ¢ is an enumeration type with values k1,...,kn. In this case, additionally, the Common Logic
theory is augmented by (not (= k; --- kj)) for i # j and (forall (x) (if (¢ x) (or (= x ki)
(= x kn) )) )7

— CL(List[c]) = form:Sequence,

— CL(Set[c]) = form: Set,

— CL(OrderedSet[c]) = form:OrderedsSet,

— CL(Bag[c]) = form:Bag,

— CL(c) = ¢, if ¢ a class name which is not one of the above.

e for each relation ¢; <¢ ¢z, an axiom (forall (x) (if (C1 x) (C2 x))), where C; = CL(c1), C2 = CL(c2),

e CL maps each attribute declaration c.p : 7[c/] € P to a predicate CL(c.p) and axioms stating type-correctness and
functionality:

— (forall (x y) (if (c.p x y) (c x)))
— (forall (x y) (if (c.p x y) (r[d] »)) [T
— (forall (x)

(if (c x) (exists (y) (c.p x v))))
— (forall (x vy z)
(if (and (c.p x y) (c.p x z))
(=y z)))
e CL maps each query operation declaration c.q(z1 : T1[ci1], ..., % : Toler]) : T[¢'] € O to a predicate CL(c.q) and axioms
stating type-correctness and functionality:
— (forall (x 1 2 -+ Tp y) (if (c.g x 1 T2 -+ xn V) (c x)))
— (forall (x x1 @2 +++ Zp y) (if (c.q x 1 T2 -+ Tn y) (Ti[e] xi))) for eachizl...nE

9Strictly speaking, this is just a name.
10 (7[c] %) is an abbreviation of either (if 7 is present)

(and (7 x) (forall (m) (if (from:7-member m x) (c’ m)))).
or (if 7 is omitted) just (c x).
" Note that the --- here is meta notation, not a sequence marker.
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— (forall (x 1 @2 *++ Tn y) (if (c.g x 1 2 -+ T y) (T[] ¥)))
— (forall (x 1 2 -++ Tn V 2Z)
(if (and (c.g x 1 T2 -+ Tn y) (C.d X T1 T2 -+ Ty Z))
(=vy z)))

Query operations are modeled as partial functions: they may be undefined for certain arguments due to violation of
multiplicity constraints.

e CL maps each composition declaration m(p; : Set[c1], ®p2 : T2[c2]) € M to a constant CL(m) and axioms stating that
CL(m) is a finite binary relation represented as a sequence of pairs of the correct type:

(from:Sequence m)
(forall (p) (if (form:sequence-member p m)
(and (form:Pair p) (cl (form:first p)) (c2 (form:second p))))

In case 7% is not present or 7 = Set, this is simplified to a binary relation directly represented as a binary predicate:
(forall (x y) (if (m x y) (and (a1 x) (c2 y))))

e for any composition declarations m(p1 : Set[ci], ®p2 : T2[c2]), m (p] : Set[ci], ®p5 : T3[ch]) € M, an axiom stating “each
instance has at most one owner”:

(forall (o o’ 1)

(if (and (form:sequence-member (form:pair o i) m)
(form:sequence-member (form:pair o’ i) m’))
o

(=00")))

In case m is represented in the simplified way, (form:sequence-member (form:pair o i) m) is replaced by (m
o i), and analogously for m’.

e CL maps each association declaration a(p: : Ti[ci],...,pr : Tr[cr]) € A to a predicate CL(a) and axioms stating that
CL(a) is a finite relation represented as a sequence of tuples of the correct types (the latter again being represented
as sequences)

(from:Sequence a)

(forall (t) (if (form:sequence-member t a)
(exists (x1 -+ )
(and (c1 x1) -+ (¢ zy)
(= t (form:sequence-insert z1 (--- (form:sequence-insert
z, form:empty-sequence))))))))

In case that all the 7; are omitted (or, equivalently, equal to Set), the representation is simplified to an n-ary predicate:
(forall (w1 2 -+ xn) (if (a 1 ®2 --- Tn) (and (c1 x1) -+ (Cn Tn))))

e the interpretation of a member end of a binary association declaration owned by a class/data type coincides with the
interpretation of the attribute: if for ¢ € {1,2}, a.p; : 7[ci] for a = a(p1 : 71[c1], p2 : T2[c2]) € A is owned by c € C
with c.p; : 75[c;] € P, then
(forall (o s)

(if (c.p o s) (= s (form:seqg2t; (form:selecti o a)))))
If a is represented in simplified form, then instead the following is used
(forall (o s)

(if (c.p o s) (forall (x) (iff (member x s) (a o x)))))

e the interpretation of a member end of a composition declaration owned by a class/data type coincides with the
interpretation of the attribute: if for ¢ € {1,2}, m.p : 7;[c;] for m = m(p1 : Set[c1], ®p2 : T2[c2]) € M is owned by ¢ € C
with ¢.p : 7i[c;] € P, then (forall (o s)

(if (c.p o s) (= s (form:seg2r; (form:selecti o m)))))
Again, if m is represented in simplified form, then the following is used
(forall (o s)

(if (c.p o s) (forall (x) (iff (member x s) (m o X)))))

It is straightforward to extend CL from signatures to signature morphisms.

Models. A ¥-model of the UML class diagram institution is just a CL(X)-model in Common Logic. That is, the UML class
diagram institution inherits models from Common Logic. Moreover, model reducts are inherited as well, using the action of
CL on signature morphisms.

I2Tgnoring the annotations 7; in the interpretation of an association is intentional, see OMG UML version 2.5, p. 197: “A link is a tuple
with one value for each memberEnd of the Association, where each value is an instance whose type conforms to or implements the
type of the end. [...] When one or more ends of the Association have isUnique = false, it is possible to have several links associating
the same set of instances. In such a case, links carry an additional identifier apart from their end values. When one or more ends
of the Association are ordered, links carry ordering information in addition to their end values.” Similarly in UML Superstructure
Specification 2.4.1, p. 37. The additional information required for links is covered by using sequences of tuples.
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E.4. Sentences

The set of multiplicity formulae Frm is given by the following grammar:

Frm ::= NumlLiteral < FunExpr
| FunEzpr < NumLiteral
FunExpr .= # Attribute
| # Association . End
| # Composition . End
| # Operation . Param
Attribute ::= Classifier . End: Type
Association ::= Name ( End : Type( , End : Type)™ )
Composition ::= Name ( End : Set | Classifier |, «End : Type )
Operation ::= Name ( ( NumLiteral < Param < NumlLiteral: Type, )* ) : Type
Type ::= Annot [ Classifier |
Classifier ::== Name
End ::= Name
Param ::= Name
Annot ::= OrderedSet | Set | Sequence | Bag
NumLiteral :==0|1]---

where Name is a set of names and NumLiteral is assumed to be equipped with an appropriate function [—] : NumLiteral — Z.

The set of Y-multiplicity constraints Mult(X) for a class/data type net ¥ is given by the multiplicity formulae in Frm
such that all mentioned elements of Association and Composition correspond to association declarations and composition
declarations of ¥, respectively, and the member end name mentioned in the clauses of FunFEzpr occur in the mentioned

association and composition, respectively.

The translation of a formula ¢ € Mult(X) along a class/data type net morphism o, written as o(p), is given by applying

o to associations, compositions, and member end names.

EXAMPLE

2 < #n2s(net : Set[Net], station : Set[Station]).station
#n2s(net : Set[Net], estation : Set[Station]).net = 1

#n2l(net : Set[Net], #line : Set[Line]).net = 1

#s2u(station : Set[Station], eunit : Set[Unit]).station = 1
#s2t(station : Set[Station], strack : Set[Track]).station = 1

1 < #c2u(connector : Set[Connector], unit : Set[Unit]).unit < 4
#c2u(connector : Set[Connector], unit : Set[Unit]).connector = 1
1 < #12t(track : Set[Track], linear : Set[Linear]).track
#12t(track : Set[Track], linear : Set[Linear]).linear = 1

1 < #12t(line : Set[Line], linear : Set[Linear]).line

#12I(line : Set[Line], linear : Set[Linear]).linear = 1

“xr = y” is an abbreviation for the two inequations “x < y” and “y < a”.
inequations “x < y” and “y < 2”.

E.5. Satisfaction Relation

For the example in Fig. [EI] there are the following multiplicity formulas:

z <y

<

Z”

is an abbreviation for the two

The satisfaction relation is inherited from Common Logic, using a translation CL(_) of multiplicity formulas to Common
Logic. That is, given a UML class and object diagram X, a multiplicity formula ¢ and a ¥-model M (the latter amounts to

a CL(X)-model M in Common Logic):
M s ¢ iff M Fcis) CL(p)

The translation of multiplicity formulas to Common Logic is as follows:
o CLU < #ep:T[c])
(forall (x y n)
(if (and (c.p x Vy)

(form:7-size y n))
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o CL({ < #a(pr:nifc1], .- ypr: Trler])pi =

(forall (z1 -+ Ti—1 Tit1 - Tr)
(if (and (c1 z1) -+ (Ci—1 Ti—1) (Cit1 Tiy1) -+ (cr Ty)
(form:sequence-size
(form:n-select a %2 [Z1 **+ Ti—1 Tiy1 -+ Ty]) n))

(buml:leq [4] n)))
If a is represented in simplified form, the following is used instead:
CL(¢ < #a(pr : mile1], -+ ypr : Trler]) i =

(forall (x1 -+ ®i—1 Tig1 -+ Tp)
(if (and (c1 ®1) -+ (Ci—1 Ti—1) (Ciy1 Tig1) -+ (Cr Ty))
(exists (y1 --- Ylep)
(and (not (= (y1 y2))) --- (not (= (Ypeg-1 Ype)))
(a 1 -+ Ti—1 Y1 Tit1 -+ Tp)
(a 21 -+ Zi—1 Ypeg Tit1r - XTr) ))))

o CL(¢ < #m(p: : Set[c1], o2 = T2[c2]).pi) =
(forall (x)
(if (and (c3—; x) (form:7-size (form:select? x m) n))
(buml:leq [4] n))
If m is represented in simplified form, the following is used instead:
CL(E < #m(p1 : Set[cﬂ,‘pg : TQ[CQ]).pl) =
(forall (x)
(1f (c2 x)

(exists (y1 -+ Y[e)
(and (not (= (y1 y2))) --- (not (= (Ypg-1 Yge)))
(m y1 x)

(m ypeg x) ))))
CL(¢ < #m(p: : Setle1], op2 : T2[e2]).p2) =
(forall (x)

(1f (c1 x)

(exists (y1 -+ Ye)
(and (not (= (y1 y2))) --- (not (= (Ypg-1 Ypep)))

(m x y1)

(m x ypg) ))))

o CLUU < H#cq(lr < fr <li:mfal... b < fu <L miler]) s T[C]) =
(forall (X 1 T2 -+ Xn)
(if (and (c.g x 1 T2 *** Tn V)

(form:7—-size x1 ni)

(form:7-size xr nk)
(form:7-size y n)
(buml:leq [41] n1)
(ouml:leq n1 [&1])

(buml:leq [¢k] mk)
(ouml:leq nk [ )
(buml:leqg [4] n)))
where [—] : NumLit — Z maps a numerical literal to an integer, and [z1 - - - z] abbreviates (form:sequence-insert x
(form:sequence—insert z, form:empty-sequence)). The translation for FunFExpr < NumlLiteral is analogous.
In case of simplified representation, the existence of [¢] distinct individuals would be replaced with a statement expressing
that if [¢] + 1 individuals have the specified property, at least two of them must be equal.
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(Informative)

TPTP [76] 78, [T7] is a language spoken by dozens of first-order theorem provers, and large libraries have been formalized
in TPTP. The underlying logic is unsorted first-order logic. In [24], many-sorted first has been formalized as an institution;
the single-sorted sublogic (using only a fixed set of sorts {s} is isomorphic to unsorted first-order logic.
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(Informative)

CasL [14] extends many-sorted first-order logic with partial functions and subsorting. It also provides induction sentences,
expressing the (free) generation of datatypes. CAsL has been presented as an institution in [59] [I4]. This annex presents a
sketch of this institution.

CaAsL signatures consist of a set S of sorts with a subsort relation < between them together with families { PFy s }wes*,scs
of partial functions, {T'Fy,s }wes*,ses of total functions and { P, }wes+ of predicate symbols. If ¥ is a signature, two operation
symbols with the same name f and with profiles w — s and w’ — s’, denoted fu,s and f, ¢, are in the overloading relation
if there are wo € S* and sg € S such that wo < w,w’ and s,s" < so. Overloading of predicates is defined in a similar way.
Signature morphisms consist of maps taking sort, function and predicate symbols respectively to a symbol of the same kind
in the target signature, and they must preserve subsorting, typing of function and predicate symbols and totality of function
symbols, and overloading.

For a signature ¥, terms are formed starting with variables from a sorted set X using applications of function symbols to
terms of appropriate sorts, while sentences are partial first-order formulas extended with sort generation constraints which
are triples (S’, F’,¢’) such that ¢’ : ¥ — ¥ and S’ and F’ are respectively sort and function symbols of ¥'. Partial
first-order formulas are translated along a signature morphism ¢ : ¥ — X' by replacing symbols as prescribed by ¢ while
sort generation constraints are translated by composing the morphism ¢’ in their third component with ¢.

Models interpret sorts as nonempty sets such that subsorts are injected into supersorts, partial/total function symbols as
partial/total functions and predicate symbols as relations, such that the embeddings of subsorts into supersorts are monotone
w.r.t. overloading.

The satisfaction relation is the expected one for partial first-order sentences. A sort generation constraint (S, F’,o’)
holds in a model M if the carriers of the reduct of M along o’ of the sorts in S’ are generated by function symbols in F”.
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(Informative)

This annex provides a core heterogeneous environment that could be used as a basis for semantics of DOL as defined in

Sec. [I0

H.1. Languages

The selected OMS languages are those whose conformance with DOL is established in the preceding annexes (OWL 2 DL in
annex [B] Common Logic in annex [C} RDFS in annex [D] CAsL in annex [G] UML class diagrams in annex [E] and TPTP in
annex . The logic graph is shown in Figure the language graph and supports relation in Figure Its nodes refer
to the following OMS languages and profiles:

e RDF W3C/TR REC-rdfl1-concepts:2014

e RDF Schema W3C/TR REC-rdfl1-schema:2014

e EL, QL, RL (all being profiles of OWL) W3C/TR REC-owl2-profiles:2009

e OWL W3C/TR REC-owl2-syntax:2009

e CL (Common Logic) ISO/IEC 24707:2007

e UML class diagrams OMG Unified Modeling Language (UML) specification 2.4.1
e CasL [14] and its sublanguage classical first-order logic (FOL)

e TPTP

The list of language translations, given below, comprises standard translations from the literature [58] [60], as well as
further translations that are considered useful for logical interoperability:

e EL — OWL

e QL — OWL

e RL —» OWL

e RDF — RDFS

e RDFS — OWL

¢ OWL — CasL.FOL

e CasL.FOL —» TPTP
e TPTP — CaAsL.FOL
e CAsL.FOL — CL

e CASL.FOL — CaAsL
e UML-CD — CL.

The translations are specified in [58] [60]. Properties of translations have been introduced in section All translations
are marked as default translations.

H.2. Logics

The logics giving the semantics of these languages are listed below:
e RDF and RDFS, supported respectively by RDF and RDFS
e EL++, supported by the language EL
e DL-Liter, supported by QL

RL, supported by RL

SROZQ(D), supported by OWL
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green: decidable ontology languages

: first-order with some
second-order constructs

—>» subinstitution
- = - -» theoroidal subinstitution
— - » simultaneously exact and

model-expansive comorphisms

Figure H.2.: Translations between conforming OMS languages

CL, supported by CL

e SubPCFOL,,,, supported by CASL
e FOL, supported by CasL.FOL and TPTP
e UML-CD, supported by UML-CD.

The institution comorphisms between these logics are

o £L++ — SROIQ(D)
e DL-Liter — SROZQ(D)
e RL - SROIQ(D)

e RDF — RDFS

e RDFS - SROZQ(D)
e SROZQ(D) — CasL.FOL

e FOL — CL

e FOL — SubPCFOLZ,
e UML-CD — CL.

All of them are selected as default logic translations. There are no institution morphisms.
between logics is given in the tables below, where L denotes undefinedness:

The partial union operation

Union L+ DL Liter RL RDF RDFS
L+ EL++ SROZO(D) SROZQ(D) SROZO(D) SROZQ(D)
DL-Liter SROZO(D) DL-Liter SROZO(D) SROZO(D) SROZO(D)
RL SROZO(D) SROZO(D) RL SROZO(D) SROZO(D)
RDF SROZO(D) SROZQ(D) SROZQ(D) RDF RDFS

RDFS SROZO(D) SROZO(D) SROZQ(D) RDFS RDFS
SROZO(D) SROZQ(D) SROZO(D) SROZQ(D) SROZO(D) SROZO(D)
FOL FOL FOL FOL FOL FOL
SubPCFOL,, | SubPCFOLL,, | SubPCFOLL,, | SubPCFOLL,, | SubPCFOLL,, | SubPCFOL,,
UML-CD cL cL cL cL cL

cL cL cL cL cL cL
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Union SROZQ(D) | FOL | SubPCFOL,,, | UML-CD | CL
EL+ SROZIQ(D) | FOL | SubPCFOLL,, | CL cL
DL-Liter SROZO(D) | FOL | SubPCFOL,,., | CL cL
RL SROZIQ(D) | FOL | SubPCFOL;,, | CL cL
RDF SROZIQ(D) | FOL | SubPCFOLL,, | CL cL
RDFS SROZO(D) | FOL | SubPCFOL,,, | CL cL
SROZO(D) SROZIQ(D) | FOL | SubPCFOL;,, | CL cL
FOL FOL FOL | SubPCFOL,,, | CL cL
SubPCFOLL,, | SROIQ(D) | FOL | SubPCFOL;,, | L I

UML-CD cL cL | L UML-CD | CL
cL cL cL | L cL cL

The other assumptions on the logics in the heterogeneous logical environment hold in the expected way.

H.3. Serializations

The following syntaxes are part of the heterogeneous logical environments:
e Turtle, supported by OWL, EL, QL, RL, RDF, RDFS
e RDF-XML, supported by OWL, EL, QL, RL, RDF, RDFS
e OWL 2 XML, supported by OWL, EL, QL, RL
e Manchester Syntax, supported by OWL, EL, QL, RL
e TPTP, supported by TPTP
e CASL, supported by CasL
e XMI, supported by UML-CD
e XCL, supported by CL
e CLIF, supported by CL

H.4. Language and Logic Translations

H.4.1. EL - OWL and ££L++ — SROZQ(D)

EL — OWL is the sublanguage inclusion obtained by the syntactic restriction according to the definition of EL, see W3C/TR
REC-owl2-profiles:2009. Since by definition, £EL£++ is a syntactic restriction of SROZQ(D), EL++ — SROZIQ(D) is the
corresponding sublogic inclusion.

H.4.2. QL — OWL and DL-Litey — SROZQ(D)

QL — OWL is the sublanguage inclusion obtained by the syntactic restriction according to the definition of QL, see W3C/TR
REC-owl2-profiles:2009. Since by definition, DL-Liter is a syntactic restriction of SROZQ(D), DL-Liter — SROZQ(D)
is the corresponding sublogic inclusion.

H.4.3. RL — OWL and RL — SROZQ(D)

RL — OWL is the sublanguage inclusion obtained by the syntactic restriction according to the definition of RL, see W3C/TR
REC-owl2-profiles:2009. Since by definition, RL is a syntactic restriction of SROZQ(D), RL — SROZQ(D) is the corre-
sponding sublogic inclusion.

H.4.4. SimpleRDF — RDF

SimpleRDF — RDF is an obvious inclusion, except that SimpleRDF resources need to be renamed if they happen to have
a predefined meaning in RDF. The model translation needs to forget the fixed parts of RDF models. Since this part can
always reconstructed in a unique way, the result is an isomorphic model translation.

H.4.5. RDF — RDFS
This is entirely analogous to SimpleRDF — RDF.
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H.4.6. SimpleRDF — SROZQ(D)

A SimpleRDF signature is translated to SROZQ(D) by providing a class P and three roles sub, pred and obj (these reify the
extension relation), and one individual per SimpleRDF resource. A SimpleRDF triple (s, p, o) is translated to the SROZQ(D)
sentence

T C 3U.(3sub.{s} M Ipred.{p} M Iobj.{o}).

From an SROZQ(D) model Z, obtain a SimpleRDF model by inheriting the universe and the interpretation of individuals
(then turned into resources). The interpretation PZ of P gives P, and EXT,, is obtained by de-reifying, i.e.

EXT () = {(y, 2) | Fu.(u,2) € pred”, (u,y) € sub”, (u, z,) € obj”}.

RDF — SROZIQ(D) is defined similarly. The theory of RDF built-ins is (after translation to SROZQ(D)) added to any
signature translation. This ensures that the model translation can add the built-ins.

H.4.7. OWL — FOL
Translation of signatures
®((C,R,I)) = (F, P) with
e function symbols: F = {aV|a € T}
e predicate symbols P = {AM]|A e CYU{RP|R e R}

Translation of sentences

Concepts are translated as follows:

az(A) = A(z)
° ozx(—'C') = =, (C)

® ay(< TLRC) = vylv ces Yntl. /\ 1,. ,n+1(R(x7 yi) N oy, (C)) — V1§i<]‘§n+1 Yi =Yj
® (O >TLR.C):E|y1,...,yn./\.: n(R(x,yi)/\ayi(C))/\/\ISK].Snyi#yj
e a,({ar,...an})=(x=a1 V...V =an)

For inverse roles R~, R (x,y) has to be replaced by R(y,z), e.g.
oz (IR™.C) = Jy.(R(y, ) A ay(C))

This rule also applies below.
Sentences are translated as follows:

as(C C D) =Vz. (az(C) = az(D))
) = ax(C)[a/=]]

R(a,b)) = R(a,b)

RCS)=Vz,y.R(z,y) — S(z,y)

Ri;...;R.CR) =
Va: Y. (3z1,...zn_1.R1(x,z1) A Ra(z1,22) A ... A Rp(2n-1,Yy)) = R(z,y)

e ax(Dis(R1, R2)) = —3z,y.Ri(z,y) N R2(z,y)
»(Ref(R)) = Vz.R(z, )
s (Irr(R)) = Vz.~R(z, x)

(

(

® Oy

® Oy

as(a:
(
(
a(

.
Q

.
Q

.
Q

»(Asy(R)) = Vz,y.R(z,y) — —R(y, x)
o ax(Tra(R)) = Vz,y, z.R(z,y) A R(y, z) = R(z, 2)

Ltla/x] means “in t, replace = by a”.
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Translation of models
e For M’ € Mod? 9L (®Y) define Bz (M’) := (A,-!) with A = |[M'| and AT = M)y, o’ = M}, R' = M.
Proposition 20 C* = {m € M., |M' + {z — m} E a.(C)}
Proof. By Induction over the structure of C.
o AT = M;\ = {m € M’}hing‘M, + {l‘ = m} ': A(l’)}
o (-C)F = ANCT =" AN{m € Mipping M’ + {z = m} F ax(C)} = {m € Mppin | M’ + {z = m} |5 —az(C)}

The satisfaction condition holds as well.

H.4.8. FOL — CL

This comorphism maps classical first-order logic (FOL) to Common Logic.

A FOL signature is translated to CL.Fol by turning all constants into discourse names, and all other function symbols
and all predicate symbols into non-discourse names. A FOL sentence is translated to CL.Fol by a straightforward recursion,
the base being translations of predications:

as(P(ti,...,tn)) = (P ax(t1) ... as(tn))
Within terms, function applications are translated similarly:

as(f(ty, ..., tn)) = (f as(t1) ... as(ta))

A CL.Fol model is translated to a FOL model by using the universe of discourse as FOL universe. The interpretation of
constants is directly given by the interpretation of the corresponding names in CL.Fol. The interpretation of a predicate
symbol P is given by using rel™ (int™ (P)) and restricting to the arity of P; similarly for function symbols (using fun™).
Both the satisfaction condition and model-expansiveness of the comorphism are straightforward.

H.4.9. OWL — CL

This comorphism is the composition of the comorphisms described in the previous two sections.

H.4.10. UML class diagrams — CL

This translation has been described in annex [E] Translation of signatures is detailed in section translation of sentences
in section [E:5] Models are translated identically.

H.4.11. FOL — CAsL

This is an obvious sublogic.

H.4.12. UML class diagrams toOWL

Let ¥ = ((C,<¢), P,O, A, M) be a class/data type net representing a UML class diagram as described in annex This net
can be translated to OWL2 using the approach described in |[80]. The ontology is extended by translating parts of this net
and its multiplicity constraints Mult(X):

e For each class ¢ € C' with superclasses c1,c2,...,cn € C (l.e. c <¢ ¢; for i =1,...,n):

Class: c
SubClassOf: cl

SubClassOf: cn

e For each attribute declaration c.p: ¢ in P

ObjectProperty: p
Domain: c
Range: c’

e For each attribute multiplicity n < c.p : 7[¢'] in Mult(X) extend the description of class ¢ by:

SubClassOf: p min n c’
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H. Annex: A Core Logic Graph

e For each attribute multiplicity c.p : 7[¢'] < n in Mult(X) extend the description of class ¢ by:

SubClassOf: p max n c’

e For each unidirectional binary association declaration a(pi : T1[c1], p2 : T2[c2]) in A:

ObjectProperty: p
Domain: cl
Range: c2

e For each bidirectional binary association declaration a(pi : T1[c1], p2 : T2[c2]) in A:

ObjectProperty: pl
Domain: c
Range: c’

ObjectProperty: p2
Characteristics: InverseFunctional
Domain: c
Range: c’
InverseOf: pl

e For each binary association n < a(p1 : 7i[c1], p2 : T2[c2]).pi, with @ # j € {1,2} in Mult(X) extend the description of
class c; by:
SubClassOf: pi min n ci
e For each binary association a(p: : 7i[c1], p2 : T2[c2]).pi < n, with ¢ # j € {1,2} in Mult(X) extend the description of
class ¢; by:

SubClassOf: pi max n ci

e For each composition declaration m(Set[ci], ®p2 : T2[c2]) in M:

ObjectProperty: p
Characteristics:
Functional,
Irreflexive
Domain: cl
Range: c2

e For each binary association n < a(p1 : Ti[c1], ®p2 : T2[c2]).ps, with ¢ # j € {1,2} in Mult(X) extend the description of
class c; by:
SubClassOf: pi min n ci
e For each binary association a(p1 : Ti[c1], ®p2 : T2[c2]).pi < n, with ¢ # j € {1,2} in Mult(X) extend the description of
class c¢; by:

SubClassOf: pi max n ci

H.5. Formal Representation of Language and Logic Translations

A formal representation of language and logic translations still needs to be developed. For the syntax aspects of these
translations, QVT could be a useful option. However, it would have added value to choose a representation of translations
that allows their correctness to be proven easily. Such a representation would have to interact with suitable representations
of languages and logics in a logical framework. See [12] for some work in this direction.

106



l. Annex: Extended Logic Graph

(Informative)

This annex extends the graph of logics and translations given in annex [H] by a list of OMS languages whose inclusion in
the registry is planned. The graph is shown in Figure Its nodes are included in the following list of OMS languages and
profiles (in addition to those mentioned in annex :

e PL (propositional logic)

e SimpleRDF (RDF triples without a reserved vocabulary)
e OBO°"" and OBO1.4

e RIF (Rule Interchange Format)

e EER (Enhanced Entity-Relationship Diagrams)

e Datalog

e ORM (object role modeling)

e the meta model of schema.org

e different diagram types of the UML (Unified Modeling Language), with possibly different logics according to different
UML semantics

e SKOS (Simple Knowledge Organization System; W3C/TR REC-skos-reference:2009)
e FOL™ (untyped first-order logic, as used for the TPTP format)
e F-logic

The actual translations are specified in [58].
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I. Annex: Extended Logic Graph

grey: no fixed expressivity
green: decidable ontology languages
: semi-decidable

orange: some second-order constructs

—  sublogique

simultaneously exact and
model-expansive comorphisms

— = <% model-expansive comorphisms

Figure I.1.: Translations between conforming OMS languages (extended)
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J. Annex: DOL Abstract Syntax in EBNF

(Informative)

The following subclauses specify the abstract syntax of DOL in EBNF. Note that it deviates from the EBNF specification
in ISO/IEC 14977:1996 in favor of a more concise EBNF syntax. More precisely, ISO/IEC 14977:1996 requires commas
between the (non-)terminals of a right-hand side, which are omitted for the sake of better readability. Also, the separator =
between left and right hand-side of a rule is replaced with : : =, and the notation N+ is used for one or more repetitions of N.

J.1. Documents

Document = DOLLibrary | NativeDocument
DOLLibrary = library [PrefixMap] LibraryName Qualification
LibraryItemx*
NativeDocument ::= <language specific>
LibraryItem ::= LibraryImport | Definition | Qualification
Definition ::= OMSDefinition
| NetworkDefinition
| MappingDefinition
| QueryRelatedDefinition
LibraryImport = lib-import LibraryName

Qualification ::= LanguageQualification
| LogicQualification
| SyntaxQualification

LanguageQualification ::= lang-select LanguageRef

LogicQualification ::= logic-select LogicRef

SyntaxQualification ::= syntax—-select SyntaxRef

LibraryName ::= IRI

PrefixMap ::= prefix-map PrefixBindingx

PrefixBinding ::= prefix-binding Prefix FullIRI [Separators]

Prefix ::= String

Separators ::= separators LibraryOMSSeparator OMSSymbolSeparator
LibraryOMSSeparator ::= String

OMSSymbolSeparator ::= String

J.2. OMS Networks

NetworkDefinition ::= network-definition NetworkName
[ConservativityStrength] Network

NetworkName ::= IRT

Network ::= network NetworkElementx ExcludedElement*

NetworkElement ::= network-element [Id] ElementRef

ExcludedElement ::= PathReference | OMSOrMappingorNetworkRef

PathReference ::= path OMSOrMappingorNetworkRef OMSOrMappingorNetworkRef

ElementRef ::= IRT

J.3. OMS

BasicOMS ::= <language specific>

ClosableOMS ::= BasicOMS | OMSReference

OMSReference ::= oms-reference OMSRef [ImportName]
ExtendingOMS ::= ClosableOMS | RelativeClosureOMS
RelativeClosureOMS ::= relative-closure ClosureType ClosableOMS
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OMS

ClosureOMS
TranslationOMS
ReductionOMS
ExtractionOMS

ApproximationOMS

FilteringOMS
UnionOMS
ExtensionOMS
QualifiedOMS
CombinationOMS
ApplicationOMS
Closure
ClosureType
CircClosure
CircVars
OMSTranslation
Reduction

SymbolList
SymbolMap

Extraction
Approximation
Filtering
Extension

RemovalKind

J. Annex: DOL Abstract Syntax in EBNF

ExtendingOMS

ClosureOMS

TranslationOMS

ReductionOMS

ExtractionOMS

ApproximationOMS

FilteringOMS

UnionOMS

ExtensionOMS

QualifiedOMS

CombinationOMS

ApplicationOMS

closure-symbols OMS Closure
translation OMS OMSTranslation
reduction OMS Reduction
module-extract OMS Extraction
approximation OMS Approximation

= filtering OMS Filtering

union OMS [ConservativityStrength] OMS
extension OMS Extension

qualified-oms Qualificationx OMS
combination Network

application OMS SubstName

ClosureType CircClosure CircVars
minimize | maximize | free | cofree
Symbol Symbolx

= Symbolx

translate OMSLanguageTranslationx [SymbolMap]

reduction RemovalKind OMSLanguageTranslationx
[SymbolList]

Symbol Symbolx

symbol-map GeneralSymbolMapItem
GeneralSymbolMapItemx*

extraction RemovalKind InterfaceSignature

approx RemovalKind [InterfaceSignature] [LogicRef]

= filter RemovalKind BasicOMS

ConservativityStrength

InterfaceSignature

ImportName
ExtensionName
SubstName

extension [ConservativityStrength]
[ExtensionName] ExtendingOMS

keep | remove

:= consequence-conservative
model-conservative
not-consequence-conservative
not-model-conservative
implied
monomorphic
weak-definitional
definitional
SymbolList
IRT
IRT
IRT

J.4. OMS Definitions

OMSDefinition
Symbol
SymbolMapItem

GeneralSymbolMapItem

Sentence
OMSName
OMSRef

oms—-definition OMSName [ConservativityStrength] OMS
IRI
symbol-map-item Symbol Symbol

::= Symbol | SymbolMapItem

<an expression specific to an OMS language>
IRI
IRI
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J. Annex: DOL Abstract Syntax in EBNF

ExtensionRef c:= IRI

LanguageRef 1= IRI

LogicRef c:= IRI

SyntaxRef c:= IRI

OMSLanguageTranslation ::= NamedTranslation | DefaultTranslation
NamedTranslation ::= named-trans OMSLanguageTranslationRef
DefaultTranslation ::= default-trans LanguageRef
OMSLanguageTranslationRef ::= IRI

J.5. OMS Mappings

MappingDefinition ::= InterpretationDefinition
RefinementDefinition
EntailmentDefinition
EquivalenceDefinition
ModuleRelDefinition

| AlignmentDefinition

InterpretationDefinition ::= interpretation-definition
InterpretationName
[ConservativityStrength]
InterpretationType
OMSLanguageTranslationx
[SymbolMap]
RefinementDefinition ::= refinement InterpretationName Refinement
InterpretationName ::= IRI
InterpretationType ::= interpretation-type OMS OMS
Refinement ::= RefinementOMS
| RefinementNetwork
| RefinementComposition
| SimpleOMSRefinement
| SimpleNetworkRefinement
RefinementOMS = refinement-oms OMS
RefinementNetwork ::= refinement-network Network
RefinementComposition ::= refinement-composition Refinement Refinement
SimpleOMSRefinement ::= simple-oms—-ref OMS OMSRefinementMap Refinement
SimpleNetworkRefinement ::= simple-network-ref Network
NetworkRefinementMap Refinement
OMSRefinementMap ::= oms-refmap [OMSLanguageTranslation] [SymbolMap]
NetworkRefinementMap ::= network-refmap NodeMap=
NodeMap ::= node-map OMSName OMSName
OMSLanguageTranslation* [SymbolMap]
EntailmentDefinition ::= entailment EntailmentName EntailmentType
OMSOMSEntailment ::= oms-oms—entailment OMS OMS
NetworkOMSEntailment ::= network-oms—-entailment Network OMSName OMS
NetworkNetworkEntailment ::= network-network-entailment Network Network
EntailmentType ::= OMSOMSEntailment
| NetworkOMSEntailment
| NetworkNetworkEntailment
EntailmentName := IRI
EquivalenceDefinition ::= equivalence-definition
EquivalenceName
EquivalenceType
EquivalenceName c:= IRI
EquivalenceType = OMSEquivalence | NetworkEquivalence
OMSEquivalence ::= oms-equivalence OMS OMS OMS
NetworkEquivalence ::= network-equivalence Network Network Network
ModuleRelDefinition ::= module-definition ModuleName
[ConservativityStrength] ModuleType
InterfaceSignature
ModuleName ::= IRI
ModuleType = module-type OMS OMS
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AlignmentDefinition ::= alignment-definition AlignmentName
[AlignmentCardinalityPair]
AlignmentType Correspondencex
[AlignmentSemantics]H

AlignmentName ::= IRI
AlignmentCardinalityPair ::= AlignmentCardinalityForward
AlignmentCardinalityBackward
AlignmentCardinalityForward ::= alignment-cardinality-forward
AlignmentCardinality
AlignmentCardinalityBackward ::= alignment-cardinality-backward
AlignmentCardinality

AlignmentCardinality ::= injective—and-total

injective

total

|
|
| neither-injective-nor-total

AlignmentType := alignment-type OMS OMS
AlignmentSemantics ::= single-domain
| global-domain
| contextualized-domain
Correspondence = CorrespondenceBlock
| SingleCorrespondence
| DefaultCorrespondence
DefaultCorrespondence ::= default-correspondence
CorrespondenceBlock ::= correspondence-block [Relation]
[Confidence] Correspondence
Correspondencex
SingleCorrespondence ::= correspondence SymbolRef [Relation]
[Confidence] GeneralizedTerm
[CorrespondencelD]
CorrespondencelD = IRI
SymbolRef 1= IRI
GeneralizedTerm ::= SymbolRef
Relation ::= RelationReference | StandardRelation
StandardRelation ::= StandardRelationValues
StandardRelationValues ::= subsumes
is-subsumed
equivalent
incompatible

instance-of

default-relation
RelationReference relation-ref IRI
Confidence ::= Double

|
|
|
| has—-instance
|
|

Double ::= < a number € [0,1] >

J.6. IRIs and Prefixes

IRI ::= FullIRT | CurieIR]ﬂ

CurieIRI ::= curie CURIE

FullIRI ::= < as defined by the IRI production in IETF/RFC 3987:2005 >
CURIE ::= String

INote that this grammar uses “type” as in“the type of a function”, whereas the Alignment API[I8] uses “type” for thetotality /injectivity
of the relation/function. For thelatter, this grammar uses “cardinality”.
28pecified below in clause W
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K. Annex: Extension of DOL with Queries

(Informative)

This annex describes the syntax of queries. A semantics still needs to be developed. DOL’s metaclass LibraryItem is
extended with a new subclass QueryRelatedDefinition for definitions related to queries.

K.1. Terms and Definitions

query language OMS language specifically dedicated to queries.
ExampLE  SPARQL, Prolog
NoTe  There are also general purpose OMS languages, which can express both OMS and queries.

query sentence containing query variables that can be instantiated by a substitution.

query variable symbol that will be used in a query and a substitution.

NoTE From an abstract point of view, query variables are just symbols; they are used in a way that they will be
substituted using a substitution. Many OMS languages have special notations for (query) variables.

NoTE Usually, query variables are the free variables of a sentence; there can be other (bound) variables.

NoteE  If there are no variables in an OMS language, constants can be used as query variables.

substitution OMS mapping that maps query variables of one OMS to complex terms of another OMS.

answer substitution substitution that, when applied to a given query, turns the latter into a logical consequence of a
given OMS.

K.2. MOF Abstract Syntax

Queries are a means to extract information from an OMS. DOL’s QueryDefinitions cover “select’type queries that deliver

an answer substitution for the query variables. (Answer) substitutions can be stored separately, using a SubstitutionDefinition.
A ResultDefinition expresses that certain answer substitutions are the result of a query. Optionally, a result can be
expressed to be complete, meaning that it comprises all answer substitutions to the query. Note that by default, OMS

are employed with an open world semantics, but using minimizations, (part of) OMS can be equipped with a closed world
semantics.

QueryRelatedDefinition

al
[

[
+gueryDefintion |QueryDefinition SubstitutionDefinition +resultDefinition |ResultDefinition

) +gueryDefintion +substitutionDefinition o

0.+ 0

+omsLanguageTranslation [0..1 +omsgl Harget gl
P OMS

OMSL anguage Translation sresutDefiiton
0.
+gueryDefinition +resultDefinition
) +s0Urce 1q 0*

- +substitutionDefinition

+resuttDefinition |0..*

0.*
+sentence g1 +gueryDefinition
Sentence +queryDefintion [0+ 0 +substitutionDefinition |0..* +substitutionDefinttion |0..*
+symbolap |1 +substitutionMame 11
SymbolMap L +complete [0.1
+gueryName +substitutiontame Complete
1 1.4
HVErS —— +vars +s3rn'|b::d‘,T +oueryName
T|vars o o Y 1
: h +resuthiame
+symhbol |0.* +iri 1
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K.3. EBNF Concrete Syntax

Term ::= <an expression specific to an OMS language>
GeneralizedTerm ::= Term | SymbolRef
QueryRelatedDefinition ::= QueryDefinition

| SubstitutionDefinition
| ResultDefinition
QueryDefinition ::= 'query’ QueryName ’'=’ ’select’ Vars ’where’
Sentence ’in’ GroupOMS
["along’ OMSLanguageTranslation] ’end’

SubstitutionDefinition ::= ’substitution’ SubstitutionName ’:’
GroupOMS ’'to’ GroupOMS ’'=’ SymbolMap
"end’

ResultDefinition ::= ’'result’ ResultName ’'=’ SubstitutionName

",’ SubstitutionName * ’for’ QueryName
["%complete’] ’end’

OMS ::= ... | OMS "with’ SubstitutionName
QueryName c:= IRI

SubstitutionName ::= IRI

ResultName c:= IRI

Vars ::= Symbol ' ,’ Symbol x

K.4. EBNF Abstract Syntax

QueryRelatedDefinition ::= QueryDefinition
| SubstitutionDefinition
| ResultDefinition
QueryDefinition ::= select-query-definition
QueryName Vars Sentence OMS
[OMSLanguageTranslation]
SubstitutionDefinition ::= substitution-definition
SubstitutionName OMS OMS
SymbolMap
ResultDefinition ::= result-definition ResultName

SubstitutionName SubstitutionName=
QueryName [Complete]

OMS ::= ... | application OMS SubstitutionName
QueryName ::= IRI

SubstitutionName 1= IRI

ResultName ::= IRI

Vars 1= Symbolx

Complete ::= complete

K.5. Semantics of Queries

While queries are very important from a practical point of view, their semantics so far has been developed only for individual
institutions. In [62], three options for an institution-independent semantics of queries and derived signature morphisms
(which can map symbols to terms) are discussed. Currently, it is not clear which one would be the best choice. It is expected
that after some experience with DOL, a choice will crystallize. This means that in the current version, the semantics of
queries is elided, and left for a later version of DOL.
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L. Annex: Example Uses of all DOL Constructs

(Informative)

This annex provides example uses of DOL constructs. Jointly with clause [7] which contains DOL examples for the usage
scenarios, all DOL constructs (although not necessarily all variants of each construct) are covered. The examples follow the
DOL Text Serialization (clause @ The following table provides an overview of which DOL language constructs have been
covered where.

Top-level declarations in DOL libraries

Top-level declaration Examples
library ... all examples
import IRI Mereology
language IRI Alignments, Publications
logic IRI Alignments, Mereology
serialization IRI Alignments, Mereology
PrefixMap Mereology
oms IRI = OMS end Alignments, Mereology
oms IRI = %consistent OMS end PropositionalExamples, Mereology
oms IRI = %inconsistent OMS end PropositionalExamples
oms IRI = %mono OMS end section
oms IRI = %def OMS end PropositionalExamples
network IRI = IRI, ..., IRI Alignments
interpretation IRI : OMS to OMS = SymbolMap Mereology
interpretation IRI : OMS to OMS = %cons SymbolMap Engine
interpretation IRI : OMS to OMS = translation IRI Mereology
refinement IRI = OMS refined via SymbolMap to OMS section |7.7,
refinement IRI = OMS refined via translation IRI to OMS | section [7.9
refinement IRI = IRI then IRI section 7.7,
refinement IRI = Network refined to Network section |7.8
entailment IRI = OMS entails OMS PropositionalExamples
entailment IRI = OMSName in Network entails OMS section [7.8
entailment IRI = Network entails Network section |7.8
equivalence IRI : OMS <-> OMS = OMS end Algebra
module IRI : OMS of OMS for Symbols section
alignment IRI : OMS to OMS = Correspondences Alignments
alignment IRI : OMS to OMS = Correspondences

assuming SingleDomain [13]
alignment IRI : OMS to OMS = Correspondences

assuming GlobalDomain [13]
alignment IRI : OMS to OMS = Correspondences

assuming ContextualizedDomain [13]
query IRI = select ars where Sen in OMS MyQuery
substitution IRI : OMS to OMS = SymbolMap MyQuery
result IRI = IRIs for IRI MyQuery
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OMS
OMS notation Examples
BasicOMS Alignments, Mereology
IRI Alignments, Mereology
minimize { OMS } BlocksWithCircumscription
OMS minimize Symbols var Symbols | BlocksWithCircumscription
OMS maximize Symbols var Symbols | BlocksWithCircumscription
free { OMS } Datatypes
cofree { OMS } Datatypes
OMS with SymbolMap Alignments, sectionlﬁl
OMS with translation IRI Mereology
OMS hide SymbolList Algebra
OMS reveal Symbols Datatypes
OMS hide along IRI section [7.8
OMS extract Symbols section |7.3
OMS remove Symbols All_kinds_of group_ specifications
OMS forget Symbols All_kinds_of group specifications
OMS keep Symbols All_kinds_of group_specifications
OMS select BasicOMS All_kinds_of group_ specifications
OMS reject BasicOMS All_kinds of group_specifications
OMS and OMS Engine
OMS then OMS Mereology
OMS then %ccons OMS [51]
OMS then %mcons OMS Propositional
OMS then %notccons OMS [51]
OMS then %notmcons OMS [51]
OMS then %mono OMS Sorting
OMS then %def OMS Persons
OMS then %implied OMS BlocksWithCircumscription
logic IRI : OMS all examples
language IRI : OMS Mereology
serialization IRI : OMS Mereology
combine NetworkElements Alignments, Publications

L.1. Simple Examples in Propositional Logic

sprefix ( : <http://www.example.org/prop#>
log: <http://purl.net/DOL/logics/>
%% descriptions of logics
ser: <http://purl.net/DOL/serializations/> )%
% ... and serializations

oo

%% non-standard serialization built into Hets:
logic log:Propositional syntax ser:Prop/Hets

library PropositionalExamples

oms Consistent = %$consistent
props A, B
. A=>B

end

oms Inconsistent = %inconsistent
props A
. A /\ not A

end

oms SingleModel = %def
props A, B
. A /\ not B
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end

entailment Ent = SingleModel entails { . not ( A=>B ) }
end

library PropositionalMereology

%% non-standard serialization built into Hets:

logic log:Propositional syntax ser:Prop/Hets

%% basic taxonomic information about mereology reused from DOLCE:

ontology Taxonomy = %conssistent

props PT, T, S, AR, PD

SV TVARYV PD — PT
S AT — L $% PD, S, T, AR are pairwise disjoint
T ANAR — L

end

L.2. Engine Diagnosis and Repair

sprefix ( log: <http://purl.net/DOL/logics/> )%
library Engine
logic log:Propositional

%% possible symptoms of an engine that is malfunctioning
spec EngineSymptoms =
props black_exhaust, blue_exhaust, low_power, overheat,
ping, incorrect_timing, low_compression
end

%% diagnosis derived from symptoms
spec EngineDiagnosis = EngineSymptoms
then %mcons
props carbon_deposits,
clogged_filter,
clogged_radiator,
defective_carburetor,
worn_rings,
worn_seals
overheat /\ not incorrect_timing => clogged_radiator
% (diagnosisl) %
ping /\ not incorrect_timing => carbon_deposits
% (diagnosis2) %
low_power /\ not incorrect_timing =>
worn_rings \/ defective_carburetor \/ clogged_filter
% (diagnosis3) %
black_exhaust => defective_carburetor \/ clogged_filter
% (diagnosis4) %
blue_exhaust => worn_rings \/ worn_seals
% (diagnosisb) %
low_compression <=> worn_rings
% (diagnosis6) %
end

%% needed repair, derived from diagnosis
spec EngineRepair = EngineDiagnosis
then %cons

props replace_auxiliary,
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repair_engine,
replace_engine
worn_rings => replace_engine
% (rule_replace_engine) %
carbon_deposits \/ defective_carburetor \/ worn_seals =>
repair_engine
% (rule_repair_engine) %
clogged_filter \/ clogged_radiator => replace_auxiliary
% (rule_replace_auxiliary)$%
end

%% application to a specific case
spec MyObservedSymptoms =

EngineSymptoms
then
overheat % (symptom_overheat) %
not incorrect_timing % (symptom_not_incorrect_timing)%
end

spec MyRepair =
MyObservedSymptoms
and
EngineRepair
end

spec Repair =
prop repair

repair
end
interpretation repairl : Repair to MyRepair = $%cons
repair |-> replace_engine end
interpretation repair2 : Repair to MyRepair = %cons
repair |-> repair_engine end
interpretation repair3 : Repair to MyRepair = %cons

repair |-> replace_auxiliary end
only repair3 is a valid interpretation. That is, ’replace_auxiliary’
is the required action

oo oo
oo oo

L.3. Mereology: Distributed and Heterogeneous Ontologies

sprefix ( : <http://www.example.org/mereology#>
owl: <http://www.w3.0rg/2002/07/owl#>
lang: <http://purl.net/DOL/languages/>
%% definitions of conforming languages

ser: <http://purl.net/DOL/serializations/>
$% ... and their serializations
log: <http://purl.net/DOL/logics/>

%% descriptions of logics
trans: <http://purl.net/DOL/translations/> )%
% ... and translations

oo

library Mereology
import PropositionalMereology

%% OWL Manchester syntax declaration:
language lang:0WL2 logic log:SROIQ syntax ser:0OWL2/Manchester

%% Parthood in SROIQ, as far as easily expressible:
ontology BasicParthood =
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Class: ParticularCategory
SubClassOf: Particular
%% omitted similar declarations of the other classes
DisjointUnionOf: SpaceRegion, TimelInterval, AbstractRegion, Perdurant
%% pairwise disjointness more compact
%% thanks to an OWL built-in
ObjectProperty: isPartOf
Characteristics: Transitive
ObjectProperty: isProperPartOf
Characteristics: Asymmetric SubPropertyOf: isPartOf
Class: Atom
EquivalentTo: inverse isProperPartOf only owl:Nothing
end %% an atom has no proper parts

%% translate the logic, then rename the entities

interpretation TaxonomyToParthood : Taxonomy to BasicParthood =
translation trans:PropositionalToSROIQ,
PT +— Particular, S — SpaceRegion,
T — TimelInterval, A +— AbstractRegion, %[ and so on ]%

logic log:CommonLogic syntax ser:CommonLogic/CLIF

o

$% syntax: the Lisp-like CLIF dialect of Common Logic

oo op

% ClassicalExtensionalParthood imports the OWL ontology from above,
$ translate it to Common Logic, then extend it there:

ontology ClassicalExtensionalParthood =

BasicParthood with translation trans:SROIQtoCL

then
(forall (X) (if (or (= X S) (= X T) (= X AR) (= X PD))
(forall (x y z) (if (and (X x) (X y) (X z))
(and

%% now list all the axioms:
%% antisymmetry:

(if (and (isPartOf x y) (isPartOf y x)) (= x vy))
%% transitivity; not combinable with asymmetry in OWL DL:
if (and (isProperPartOf x y) (isProperPartOf y z)) (isProperPartOf x z))

(
(iff (overlaps x y) (exists (pt) (and (isPartOf pt x) (isPartOf pt vy))))
(iff (isAtomicPartOf x y) (and (isPartOf x y) (Atom x)))
(Lff (sum z x vy)
(forall (w) (iff
(overlaps w z)
(and (overlaps w x) (overlaps w Vy)))))
%% existence of the sum:
(exists (s) (sum s x Vy))
)))))
%% definition of fusion
(forall (Set a) (iff (fusion Set a)
(forall (b) (iff (overlaps b a)
(exists (c) (and (Set c) (overlaps c a)))))))

}

L.4. Defined Concepts

sprefix( lang: <http://purl.net/DOL/languages/> )%

library Persons
language lang:OWL

ontology Persons =

Class Person
Class Female
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then %def

Class: Woman EquivalentTo: Person and Female
end

L.5. Blocks World: Minimization

sprefix ( lang: <http://purl.net/DOL/languages/>)%

library BlocksWithCircumscription
language lang:OWL
ontology Blocks =
%% FIXED PART
Class: Block
Individual: Bl Types: Block
Individual: B2 Types: Block DifferentFrom: Bl

%% B1 and B2 are different blocks
then

%% CIRCUMSCRIBED PART
minimize {
Class: Abnormal
Individual: Bl Types: Abnormal
%% Bl is abnormal
}
then
%% VARYING PART
Class: Ontable
Class: BlockNotAbnormal
EquivalentTo: Block and not Abnormal
SubClassOf: Ontable
%% Normally, a block is on the table
then %$implied
Individual: B2 Types: Ontable

29

%% B2 is on the table
end

ontology Blocks_Alternative =

Class: Block

Class: Abnormal

Individual: Bl Types: Block, Abnormal

Individual: B2 Types: Block DifferentFrom: Bl
Bl and B2 are different blocks
Bl is abnormal

o
°

o
°

oo oo

Class: Ontable
Class: BlockNotAbnormal
EquivalentTo: Block and not Abnormal
SubClassOf: Ontable
%% Normally, a block is on the table
minimize Abnormal var Ontable, BlockNotAbnormal
then $implied
Individual: B2 Types: Ontable
%% B2 is on the table
end

ontology Blocks_Alternative2 =
Class: Block
Class: Normal
Individual: Bl Types: Block, not Normal
Individual: B2 Types: Block DifferentFrom: Bl
Bl and B2 are different blocks
Bl is abnormal

9o
°
o
°

oo oo
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Class: Ontable
Class: NormalBlock
EquivalentTo: Block and Normal
SubClassOf: Ontable
%% Normally, a block is on the table
maximize Normal wvar Ontable, BlockNotAbnormal
then $implied
Individual: B2 Types: Ontable
%% B2 is on the table
end

L.5.1. Alignments

sprefix ( : <http://www.example.org/alignment#>
owl: <http://www.w3.0rg/2002/07/owl#>
lang: <http://purl.net/DOL/languages/>
%% definitions of conforming languages

ser: <http://purl.net/DOL/serializations/>
$% ... and their serializations
log: <http://purl.net/DOL/logics/>

%% descriptions of logics
trans: <http://purl.net/DOL/translations/> )%
%% ... and translations

library Alignments

language lang:0WL2 logic log:SROIQ syntax ser:OWL2/Manchester

alignment Alignmentl : { Class: Woman } to { Class: Person } =
Woman < Person
end

ontology AlignedOntologyl =
combine Alignmentl
end

ontology Ontol =
Class: Person
Class: Woman SubClassOf: Person
Class: Bank

end

ontology Onto2 =
Class: HumanBeing
Class: Woman SubClassOf: HumanBeing
Class: Bank

end

alignment VAlignment : Ontol to Onto2 =

Person = HumanBeing,
Woman = Woman
end

network N =

1 : Ontol, 2 : Onto2, VAlignment
end

ontology VAlignedOntology =

combine N
l:Person is identified with 2:HumanBeing
1:Woman 1is identified with 2:Woman

oo oo
oo oo
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%% 1:Bank and 2:Bank are kept distinct
end

ontology VAlignedOntologyRenamed =

VAlignedOntology with 1:Bank |-> RiverBank, 2:Bank |-> FinancialBank
end

L.6. Distributed Description Logics

Sprefix ( : <http://www.example.org/mereology#>
owl: <http://www.w3.0rg/2002/07/owl#>
lang: <http://purl.net/DOL/languages/>
%% definitions of conforming languages

ser: <http://purl.net/DOL/serializations/>
%% ... and their serializations
log: <http://purl.net/DOL/logics/>

o0

$% descriptions of logics
trans: <http://purl.net/DOL/translations/> )%
% ... and translations

oo

library Publications

language lang:0WL2 logic log:SROIQ syntax ser:0OWL2/Manchester

ontology Publicationsl =
Class: Publication
Class: Article SubClassOf: Publication
Class: InBook SubClassOf: Publication
Class: Thesis SubClassOf: Publication
Class: MasterThesis SubClassOf: Thesis
Class: PhDThesis SubClassOf: Thesis
end

ontology Publications2 =
Class: Thing
Class: Article SubClassOf: Thing
Class: BookArticle SubClassOf: Thing
Class: Publication SubClassOf: Thing
Class: Thesis SubClassOf: Thing
end

ontology Publications_Combined =
combine

1 : Publicationsl with translation OWL2MS-OWL,

2 : Publications2 with translation OWL2MS-OWL

%% implicitly: Article — 1:Article

%% Article — 2:Article

with translation MS-OWL2DDL

%% implicitly added by translation MS-OWLZDDL:
binary relation providing the bridge

C
l:Publication — 2:Publication

:PhdThesis —E+ 2:Thesis

1

C .

1:InBook — 2:BookArticle
C

l:Article — 2:Article

1

|
:Article — 2:Article
end

ontology Publications_Extended =
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Publications with translation DDL2-ECO
%% turns implicit domain-relation into default relation ’D’
%% add E-connection style bridge rules on top

end

library Market

language lang:0WL2 logic log:SROIQ syntax ser:0OWL2/Manchester
ontology Purchases =
combine
1 : { Class: PurchaseOrder 1},
2 : { ObjectProperty: Buyer
ObjectProperty: Good
ObjectProperty: BoughtBy }
with translation OWL2DDLwithRoles
then
1:PurchaseOrder —-into-> 2:BoughtBy
means in FOL:
forall x 1PurchaseOrder (x) —-> forall yz CR12(x,y,z) —> 2BoughtBy(y,z)

k-
°
o
°

de op

end

L.7. Algebra

sprefix ( : <http://www.example.org/alignment#>
owl: <http://www.w3.0rg/2002/07/owl#>
lang: <http://purl.net/DOL/languages/>

o0

%% descriptions of languages

ser: <http://purl.net/DOL/serializations/>
%% ... serializations

trans: <http://purl.net/DOL/translations/> )%
%% ... and translations

library Algebra

language lang:CommonLogic syntax ser:CommonLogic/CLIF

spec implicit_group =
(forall (x y z)
(= (op x (op y 2z)) (op (op X y) z)))
(exists (e)
(forall (x)
(and

T
X %
33
X
ox

(forall (x)
(exists (y)
(and

r
%
)
S
%

(op x v)))
(op vy x))))))

r
X
e)
ke
x

end

spec explicit_group =
(forall (x y z)

(= (op x (op y z)) (op (op x y) z)))

(
(forall (x) (and (= x (op e x))
(= x (op x €)))))
(forall (x)
(and (= x (op x (op x (inv x))))
(= x (op x (op (inv x) x))))))
end
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equivalence groups_equiv : implicit_group <-> { explicit_group hide e, inv }
end

equivalence e : algebra:BooleanAlgebra
<> algebra:BooleanRing =

XAy = Xy

XVy = xty+x-y

—x o= 1+x

Xy = XAy

xty = (xVy) A = (xAy)

end

language lang:CASL

spec InterpolatedGroup =
sort Elem

ops 0:Elem; __+_:ElemxElem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x
x+(y+tz) = (x+y)+z
x+inv(x) = 0
forget inv
end
entailment ent = InterpolatedGroup
entails { . forall x:Elem . exists y . Elem . x+y=0 }
end

L.7.1. Groups specified with different forms of hiding and forgetting
Groups and hiding

sprefix ( lang: <http://purl.net/DOL/languages/> )%
library All_kinds_of_group_specifications
language lang:CASL

spec Group_with_inverse =
sort Elem
ops O:Elem; __+_ :ElemxElem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x
xt (y+z) = (xty)+z
x+inv (x) =0
end

spec Group_via_hiding =
Group_with_inverse hide inv
end

The semantics of this specification is the class of all monoids that can be extended with an inverse, i.e. class of all groups.
The effect is second-order quantification:

language lang:HasCASL
spec Group_in_second_order_logic =
sort Elem
ops O:Elem; __+__ :ElemxElem—>Elem;
exists inv:Elem->Elem
forall x,y,z:elem . x+0=x
/\ x+(y+tz) = (xty)+z
/\ x+inv(x)=0
end

Groups and module extraction
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language lang:CASL

spec Group_via_module_extraction_1 =
Group_with_inverse remove inwv

end

The semantics is just Group_with_inverse, since the module needs to be enlarged to the whole specification. This is of
course unsatisfactory. A better use of module extraction is the following:

language lang:CASL
spec Group_with_implicit_inverse =
sort Elem

ops 0:Elem; __ +_ :ElemxElem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

X+ (y+z) = (x+y)+z

x+inv(x) = 0

exists y:Elem . x+y=0
end

spec Group_via_module_extraction_2 =
Group_with_implicit_inverse remove inv
end

The semantics of Group_via_module_extraction_2 is just Group_with_implicit_inverse, because adding inv is
conservative.

Groups via interpolation

language lang:CASL

spec Group_via_interpolationl =
Group_with_inverse forget inv

end

spec Group_via_interpolation2 =
Group_with_inverse keep Elem, 0, __+

end

Both specifications are equivalent, and they are equivalent to Group_with_implicit_inverse.

Groups and filtering

language lang:CASL

spec Group_via_Filtering_1 =
Group_with_inverse reject inv

end

spec Group_via_Filtering_2 =
Group_with_inverse select Elem, 0, __ +_

end

Both specifications are equivalent, and they are equivalent to the following theory which just omits the inverse axioms (and
hence does not specify groups):

language lang:CASL
spec Group_via_reject =
sort Elem

ops 0:Elem; __+__ :ElemxElem—>Elem
forall x,y,z:elem . x+0=x
xt (y+z) = (xty)+z
end

L.8. Queries

sprefix ( lang: <http://purl.net/DOL/languages/> )%
library MyQuery
language lang:CASL
spec Person =
sort s
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pred Person:s
op max,peter:Person

end

query MyQuery = select x where Person(x) in Person

end

substitution MySubst : { Person then op x:Person } to Person = x |-> max
end

result MyResult = MySubst for MyQuery

L.9. Datatypes

sprefix( lang: <http://purl.net/DOL/languages/> )%
library Datatypes
language lang:CASL

spec Bag =
sort Elem
then free {

sort Bag
ops mt:Bag;
__union__ :Bag*Bag->Bag, assoc, comm, unit mt

}
end

spec Stream =
sort Elem
then cofree {
sort Stream
ops head:Stream—->Elem;
tail:Stream—->Stream
}
end

spec Finite =
sort Elem

free type Nat ::= 0 | suc(Nat)
op f: Nat —->7? Elem
forall x:Elem . exists n:Nat . f(n)=x % (f_surjective) %
exists n:Nat . forall m:Nat . def f(m) => m<n % (f_bounded) %
reveal Elem
end
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(Informative)

This annex sketches scenarios that outline how DOL is intended to be applied. For each scenario, the status of its
implementation is described, the DOL features it makes use of are listed, and a brief description is provided.

M.1. Generating multilingual labels for menus in a user interface

Status exists (but not yet DOL-based)
Features Aligning (multiple OWL ontologies), Annotation

DO-ROAM (Data and Ontology driven Route-finding Of Activity-oriented MobilityEb is a web service with an interactive
frontend that extends OpenStreetMap by an ontology-based search for located activities and opening hours [I0]. The service
is driven by a set of different OWL ontologies that have been aligned to each other using the Falcon matching tool [35].
The user interface of the DO-ROAM web frontend offers multilingual labels, which are maintained in close connection to
the underlying ontologies.

Porting DO-ROAM to DOL would enable the coherent representation of the aligned ontologies as one OMS network, and
it would enable the maintenance of the user interface labels as annotations inside the ontology.

M.2. Connecting devices of differing complexity in an Ambient Assisted Living
setting

Status core ontology (not DOL-based) and service environment exists — the DOL-based extensions not yet

Features Logical OMS mappings across different logics, connection to linked open datasets

Consider the following ambient assisted living (AAL) scenario:

Clara instructs her wheelchair to get her to the kitchen (next door to the living room. For dinner, she
would like to take a pizza from the freezer and bake it in the oven. (Her diet is vegetarian.) Afterwards she
needs to rest in bed.

Existing ontologies for ambient assisted living (e.g. the OpenAAI_E] OWL ontology) cover the core of these concepts; they
provide at least classes (or generic superclasses) corresponding to the concepts highlighted in bold. However, that does not
cover the scenario completely:

e Some concepts (here: food and its properties, italicized) are not covered. There are separate ontologies for that (such
as the Pizza ontologyﬁ'])7 whereas information about concrete products (here: information about the concrete pizza in
Clara’s oven) would rather come from Linked Open Datasets than from formal ontologies.

e Not all concepts (here: space and time, underlined) are covered at the required level of complexity. OpenAAL says
that appointments have a date and that rooms can be connected to each other, but not what exactly that means.
Foundational ontologies and spatial calculi, often formalized in first-order logic, cover space and time at the level of
complexity required by a central controller of an apartment and by an autonomously navigating wheelchair.

e Thirdly, even description logic might be too complex for very simple devices involved into the scenario, such as the
kitchen light switch, for which propositional logic may be sufficient.

Thus, an adequate formalization of this scenario has to be heterogeneous. For example, one could imagine the following
axioms:

light switch “light is switched on if and only if someone is in the room and it is dark outside” — this could be formalized in
propositional logic as light on = person _in_room A dark_outside.

Ihttp://www.do-roam.org

2http://openaal.org

3This is not a fully comprehensive food ontology, but rather a well-known sample OWT ontology; cf. http://owl.cs.manchester.
ac.uk/tutorials/protegeowltutorial/
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freezer “a vegetarian pizza is a pizza whose toppings are all vegetarian” — this could be formalized in description logic as
VegetarianPizza = Pizza M VhasTopping.Vegetarian

wheelchair “two areas in a house (e.g. a working area in a room) are either the same, or intersecting, or bordering, or
separated, or one is part of the other” — this could be formalized as an RCC-style spatial calculus in first-order logic

as
Vai,az. equal(ai,az) Y overlapping(ai,az) Y bordering(ai, az2) Y disconnected (a1, az)
Vpart_of(a1,a2) ¥ part_of(az,a1).

DOL would be capable of expressing all that within one DOL library of heterogeneous ontologies arranged around an
OWL core (here: the OpenAAL ontology), including OMS mappings from OpenAAL to the other ontologies, as well as a
re-declaration of a concrete pizza product from a product dataset as an instance of the Pizza OWL class.

M.3. Interpreting the OWL formalization of the DOLCE foundational ontology in
First-order logic

Status potential use case

Features Logical OMS mappings

DOLCE is a foundational ontology that has primarily been formalized in the first-order logic ontology language KIF (a
predecessor of Common Logic), but also in OWL (“DOLCE Lite”) [55]. This ‘OWLized’ version was targeting use in
semantic web services and domain ontology interoperability, and to provide the generic categories and relationships to aid
domain ontology development. DOLCE has been used also for semantic middleware, and in OWL-formalized ontologies of
neuroimaging, computing, ecology, and data mining and optimization. Given the differences in expressivity, DOLCE Lite
had to simplify certain notions. For example, the DOLCE Lite formalization of “temporary parthood” (something is part of
something else at a certain point or interval in time) omits any information about the time, as OWL only supports binary
predicates (a.k.a. “properties”). That leaves ambiguities for modeling a view from DOLCE Lite to the first-order DOLCE,
as such a view would have to reintroduce the third (temporal) component of such predicates:

e Should a relation asserted in terms of DOLCE Lite be assumed to hold for all possible points/intervals in time, i.e.
should it be universally quantified?

e Or should such a relation be assumed to hold for some points/intervals in time, i.e. should it be existentially quantified?
e Or should a concrete value for the temporal component be assumed, e.g. “0” or “now”?

DOL would support the formalization of all of these views and, given suitable consistency checking tools, the analysis of
whether any such view would satisfy all further axioms that the first-order DOLCE states about temporal parthood.

M.4. Extending the OWL Time ontology to a more comprehensive coverage of
time
Status potential use case

Features Logical OMS mappings

The OWL Time ontologyﬂ covers temporal concepts such as instants and intervals and has been designed for describing the
temporal content of Web pages and the temporal properties of Web services. While OWL is suitable for these intended
applications, only a first-order axiomatization is capable of faithfully capturing all relevant notions, such as the trichotomy
of the “before” relation: One instant is either before another one, or at the same time, or after. Moreover, a relationship
between facts expressed in terms of instants and facts expressed in terms of intervals (both of which is, independently,
possible in OWL), can only be established via first-order logic, e.g. by declaring an interval of length zero equivalent to an
instant.

A separate first-order axiomatization of OWL Time exists [33][69]. DOL would instead provide the mechanism of modeling
OWL Time as one coherent heterogeneous ontology, using OWL and, e.g., Common LogicEl For the temporal description logic
DLRus for knowledge bases and logic-based temporal conceptual data modeling [2] B]; DLRuys combines the propositional
temporal logic with the Since and Until operators and the (non-temporal) description logic DLR and can be regarded as an
expressive fragment of the first-order temporal logic L¥"°®*"*! Within DOL, this would enable one to have ‘lightweight’
time aspects with OWL Time, which are then properly formalized with DLRys or a leaner variant TDL-Lite [5], where
notions such as (some time) “before” are given a formal semantics of the intended meaning that the plain OWL Times
human-readable object property does not have. The latter, then, would enable the modeler to represent the meaning —hence,
restrict the possible models— and check the consistency of the temporal constraints and so-called ‘evolution constraints’ in

4nttp://www.w3.org/TR/2006/WD-owl-time-20060927/
5This is also a use case for multiple namespaces: OWL supports namespaces, CL does not.
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the ontology (evolution constraints constrain membership of an object or an individual relation to a concept or relationship
over time). For instance, that each divorcee must have been a participant in a marriage before, that boarding only may
occur after checking in, and that any employee must obtain a salary increase after two years of employment. It also can
be used to differentiate between essential and immutable parthood, therewith being precise in the ontology about, e.g., the
distinction how a human brain is part of a human (humans cannot live without it), versus how a hand is part of a human
(humans can live without it), versus how the hand is part of, say, a boxer, which is essential to the boxer but only for has
long as he is a boxer [4].

M.5. Metadata in COLORE (Common Logic Repository)

Status exists (but not yet DOL-based)

Features Annotation, Metadata vocabularies

COLORE, the Common Logic Repositoryﬂ is an open repository of more than 150 ontologies as of December 2011, all
formalized in Common Logic. COLORE stores metadata about its ontologies, which are represented using a custom XML
schema that covers the following aspectﬂ without specifying a formal semantics for them:

module provenance author, date, version, description, keyword, parent ontologyﬂ
axiom source provenance name, author, yealﬂ

direct relations maps (signature morphisms), definitional extension, conservative extension, inconsistency between ontologies,
imports, relative interpretation, faithful interpretation, definable equivalence

DOL provides built-in support for a subset of the “direct relations” and specifies a formal semantics for them. In addition, it
supports the implementation of the remainder of the COLORE metadata vocabulary as an ontology, reusing suitable existing
metadata vocabularies such as OMYV, and it supports the implementation of one or multiple Common Logic ontologies plus
their annotations as one coherent DOL library.

Snttp://stl.mie.utoronto.ca/colore/

"http://stl.mie.utoronto.ca/colore/metadata.html

&Note that this use of the term “module” in COLORE corresponds to the term structured OMS in this OMG Specification.
9Note that this may cover any sentences in the sense of this OMG Specification.
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(Informative)

N.1. The Heterogeneous Tool Set (Hets)

The Heterogeneous Tool Set (Hets) is an implementation of DOL. Hets is a parsing, analysis and proof tool for OMS, OMS
networks and OMS mappings written in DOL and DOL-conforming languages. It supports a wide range of OMS languages
and language translations, in particular OWL, RDF, Common Logic, first-order logic and CASL. Support for MOF, UML
class diagrams and state machines is in preparation. Hets has been co-developed together with the DOL language presented
in this standard, and has been used to test the examples. Hets has been connected to a considerable number of proof tools
like theorem provers, supporting various logics. Logics that are not directly supported by any proof tool can be supported
indirectly, through a logic mapping into a tool-supported logic.

Hets is open source, licensed under GPLv2 or higher. The sources are available at the following URL https://github.
com/spechub/hetsl

N.2. Ontohub, Modelhub, Spechub

Ontohub/Modelhub/Spechub is another implementation of DOL. It is a repository engine for managing OMS, OMS networks
and OMS mappings written in DOL and DOL-conforming languages. It supports the same range of OMS languages and
language translations as Hets (indeed, Hets is used for analyzing DOL files). The novel aspect w.r.t. Hets is the provision of
git-based repositories and IRIs for DOL libraries, OMS, symbols and mappings (see also Annex @

Users of Ontohub/Modelhub/Spechub can upload, browse, search and annotate OMS in various languages via a web fron-
tend, see https://ontohub.org, https://model-hub.orgland https://spechub.org. Ontohub/Modelhub/Spechub
is open source under GNU AGPL 3.0 license, the sources are available at the following URL https://github.com/
ontohub/ontohubl

Ontohub/Modelhub/Spechub enjoys the following distinctive features:

e OMS can be organized in multiple repositories, each with its own management of editing and ownership rights,
e private repositories are possible,
e version control of OMS is supported via interfacing the Git version control system,

e OMS can be edited both via the browser and locally with any editor (and in the latter case pushed via Git); Git will
synchronize both editing approaches,

e one and the same URL is used for referencing an OMS, downloading it (for use with tools), and for user-friendly
presentation in the browser (i.e. Ontohub/Modelhub/Spechub is fully linked-data compliant, see also the end of this
section)

e modular and heterogeneous OMS are specially supported,

e OMS can not only be aligned (as in BioPortal and NeOn), but also be combined along alignments (using DOL’s
combine construct),

e logical relations between OMS (interpretation of theories, conservative extensions etc.) are supported,
e support for a variety of OMS languages,

e OMS can be translated to other OMS languages, and compared with OMS in other languages,

e heterogeneous OMS involving several languages can be built,

e OMS languages and OMS language translations are first-class citizens and are available as linked data.

Ontohub/Modelhub/Spechub is not a repository, but a semantic repository engine. This means that Ontohub/Model-
hub/Spechub OMS are organized into repositories. The organization into repositories has several advantages:
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e Firstly, repositories provide a certain structuring of OMS, let it be thematically or organizational. Access rights can
be given to users or teams of users per repository. Typically, read access is given to everyone, and write access only
to a restricted set of users and teams. However, also completely open, i.e. world-writeable repositories are possible,
as well as private repositories visible only to a restricted set of users and teams. Since creation of repositories is done
easily with a few clicks, this supports a policy of many but small repositories (which of course does not preclude the
existence of very large repositories). Note that also structuring within repositories is possible, since each repository is
a complete file system tree.

e Secondly, repositories are git repositories. Git is a popular decentralized version control system. With any git
client, the user can clone a repository to her local hard disk, edit it with any editor, and push the changes back to
Ontohub/Modelhub/Spechub. Alternatively, the web frontend can be used directly to edit OMS; pushing will then be
done automatically in the background. Parallel edits of the same file are synchronized and merged via git; handling
of merge conflicts can be done with git merge tools.

e Thirdly, OMS can be searched globally in Ontohub/Modelhub/Spechub, or in specific repositories. Additionally,
user-supplied metadata like categories, formality levels and purposes can be used for searching.

Ontohub/Modelhub/Spechub is linked-data compliant. This means that OMS are referenced by a unique URL of the
form https://ontohub.org/name-of-repository/path-within-repositoryl Depending on the MIME type of
the request, under this URL, the raw OMS file will be available, but also a HTML version for display in a browser, an XML
and a JSON version for processing with tools.

N.3. APIs

Both Hets and Ontohub/Modelhub/Spechub provide APIs for the interchange with other tool{l Ontohub/Modelhub/Spechub
also provides an API for exchange with other instances, so that e.g. Ontohub and Modelhub can exchange information about
available repositories and their OMS.

In the future, these APIs shall be aligned with OMG’s standardization effort API4KB.

ISee nttps://github.com/spechub/Hets/wiki/RESTful-Interface and https://github.com/ontohub/ontohub/wiki/,
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O. Annex: Ontohub loc/id v2

(Informative)

This annex describes the way how Ontohub assigns IRIs to DOL libraries, OMS, symbols etc. Ontohulﬂ is an imple-
mentation for DOL, and it is suggested that other tools supporting DOL should adopt the same or a similar scheme for
IRIs.

0.1. Concept

Generally an Ontohub loc/id (locator/identifier) is just an IRI of a DOL library (contained in a document), an OMS or one
of its members (symbols, sentences, mappings). However, Ontohub loc/ids are generated by the Ontohub application and
assigned to an OMS. Ontohub tries to infer them from the path of the repository, the path of the OMS and the specific
name. Additionally, Ontohub ensures that this specific IRI is actually a locator and not just an identifier.

This is quite important as the IRI of an OMS is the general starting interface a user has with the given OMS. When she
evaluates the OMS in her tool of choice she’ll use the IRI to reference the given OMS. When she wants to work on Ontohub
with the given OMS she’ll point her browser at the given IRI. As one’s familiarity with the Ontohub application increases
one will more often want to use the IRI instead of just searching or even browsing for something. This is further intensified
if the IRI-schema follows a schema that is easily understood by a user.

0.2. Ontohub-Style

Identifying OMS and their members in Ontohub is a hierarchical task. A DOL document belongs to a repository. An OMS
may belong directly to a repository, or indirectly through a DOL library. Mappings, symbols and sentences in turn belong to
an OMS. So one could use the hierarchical portion of an IRI instead of the query string. This would mean using a forward
slash (/) as separator.

Ontohub loc/ids are specific to an instance of the Ontohub application. However, such an instance might be reachable
via multiple multiple FQDNs (fully qualified domain name) and ports. So instead a qualified loc/id is expected to be a
tuple comnsisting of the specific application instance, represented by the set of their schema-fqdn-port tuples, and the actual
identifying portion beginning with the hierarchical forward slash (/).

0.2.1. qualified loc/id structure

1. Set of Schema + FQDNs + Port for an instance: INSTANCE, e.g.
{|http://ontohub.org, http://model-hub.org, http://spechub.org }
2. Identifying portion loc/id with leading forward slash (/)
e The identifying portion is split into three parts.
e HIERARCHY: is the path/to/OMS-file, with elements split by a forward slash (/).
e MEMBER: is the element of the OMS at the specific position. It is being separated from the HIERARCHY by
two forward slashes (//). These forward slashes are also being used to separate members inside of MEMBER
(e.g. in the case of an OMS which contains a symbol).
e COMMAND: is not really an element or part of an OMS, but a command the user wishes to execute on the
object selected by the previous sections of the loc/id. It is denoted and separated from the rest of the IRI by
the use of three consecutive forward slashes (///).

n this annex, “Ontohub” could equally well be substituted by “Modelhub” and “Spechub”.
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0.2.2. Examples

DOL document

O. Annex: Ontohub loc/id v2

DOL document

/dol-testing/double_mapped_blendoid

OMS /dol-testing/double_mapped_blendoid//DMB-CommonSource
Mapping /dol-testing/double_mapped_blendoid//SomeMapping
Symbol /dol-testing/double_mapped_blendoid//DMB-CommonSource//KitchenTable
Sentence /dol-testing/double_mapped_blendoid//DMB-CommonSource//Ax02
OMS
DOL document /dol-testing/double_mapped_blendoid

OMS
Mapping
Symbol
Sentence

/default/pizza
/default/pizza//SomeMapping
/default/pizza//Veneziana
/default/pizza//Ax02

Fully qualified symbols (e.g. + : Nat X Nat — Nat) will need to be escaped but will be supported.

0.3. Specification

A qualified loc/id IRI can be specified as a special case of RFC 3987 (IRI, [20]). Code-excerpt on page [[34] contains this
specification of qualified loc/ids in Augmented Backus-Naur Form (ABNF, [I7]). ABNF is used, because RFC 3987 itself
specifies IRIs using ABNF and it is desirable to be able to reference rules from the RFC in our specification. Such rules can

be easily identified by the i-prefix that was used when writing the IRI-rules.

<Loc-Id-IRI> represents the start rule for a qualified loc/id and <Loc-Id> would be the starting non-terminal for
a loc/id without its INSTANCE qualifier. The following symbols are non-terminal symbols that represent rules from the

IRI-RFC.
e <iquery>
e <ifragment>
® <scheme>
e <iauthority>

® <isegment-nz>

One should take note that the <scheme> rule does not include a i-prefix. This is because <scheme> is actually taken

from RFC 3986 [7], which defines the URI.
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; Author: Tim Reddehase

; E-Mail: robustus AT rightsrestricted DOT com
; Last-Changed: 2015-02-22

; Version: 0.1.2

; This ABNF for Loc/Ids is based on the definition

; of IRIs and as such uses Rules from the RFC-Definition
; of IRIs: http://tools.ietf.org/html/rfc3987#section-2.2
; Rules that represent an IRI-rule usually start with an
; 1 char.

Loc-Id-IRI = li-instance [ li-ref ] Loc-Id [ "?" iquery ] [ "#" ifragment ]

; Represents an Ontohub-Application instance.
; Semantically multiple <li-instance> values
; can be equivalent and thus forming the

; set of INSTANCE. <scheme> is a rule inside
; of the IRI RFC.

li-instance = scheme "://" iauthority

; a lone repository is also a Loc/Id
Loc-Id = "/" li-repository [ li-hierarchy [ li-member ] ] [ li-command ]

; Represents the path/directory name of the repository
li-repository = isegment-nz

; Represents a ref/ special form
li-ref = "/" "ref/" isegment-nz

; Represents the path inside the Repository to the ontology
li-hierarchy = *( "/" isegment-nz )

; Represents internal ’‘path’ inside of the ontology

; where child-ontologies, mappings, symbols and sentences
; are first-class members.

li-member = %2 ( "//" isegment-nz )

; Represents a command to be ’'executed’ on the
; specific resource
li-command = *=( "///" isegment-nz )

Figure O.1.: Specification of loc/id IRIs in ABNF
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0O.4. ref/ special form loc/ids

There is one additional syntax-element that has not been covered yet. One of the main features that Ontohub provides in
its role as an Open OMS Repository is versioning of OMS by backing the repositories with git. For many use cases it is
important to access such versions and other related files inside of a repository, which can be basically viewed as a directory
in a file system. ref/-style IRIs accomplish this task.

The ref/argument-form is a prefix of the HIERARCHY, MEMBER and COMMAND components—otherwise referred
to as unqualified loc/id, or in short: loc/id.

e Version: /ref/2/default/pizza//SomeMapping
e Commit: /ref/def3ab/default/pizza//SomeMapping

Branch: |/ref/master/default/pizza//SomeMapping

Date: |/ref/2014-09-07/default/pizza//SomeMapping
— would take the latest commit which applies to the Date range.

e MMT:|/ref/mmt/default/pizza?SomeMapping

— Does not refer to a specifically designated version of the element, but always refers to the current one instead.
This version allows to use MMT-style IRIs [70], which should guarantee basic support for tools which expect the
MMT-style.

0.4.1. References inside of the tree

It is important to provide a way to reference files inside a repository, This especially applies to files that do not represent
OMS. This will be accomplished by the tree/ special form. Additionally, Ontohub will support a treeref special form
which allows to reference a specific version of a files using the Commit, Branch and Date references. MMT is for obvious
reasons not supported.

e File: /tree/default/some_directory/some_child_dir/Foo.txt
— applies to HEAD commit of main branch (currently always master)

e File at reference: |[/treeref/{REF}/default/tree/some_directory/some_child_dir/Foo.txt
— where {REF} is any of the above possible ref-types: Commit, Branch or Date

0.5. Disambiguation

If the path/to/an—-0MS| can actually also be a path to a directory — which would be possible if there were a directory
named pizza and an ontology named pizza.owl — will the loc/id be resolved to a disambiguating page.

This page will contain a link to the tree for the directory, e.g. |/tree/default/pizza, and a link to a ref/ special
form version of the OMS, e.g.|/ref/master/default/pizzal

If however the loc/id is requested with a text/plain content type Ontohub serves the OMS. This is in part because there
is no reasonable representation of a directory that could be supported. Another reason is that Ontohub serves OMS as its
main objects. And as text/plain is the MIME-type that was chosen to always return the textual content of an OMS (the
raw file), one needs to serve that, even if the loc/id would be ambiguous in a normal request.
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P. Annex: Introduction to Category Theory

(Informative)

Definition 21 A category C consists of

e a class of objects, denoted |C|,

e for each two objects a and b, a class of morphisms (or arrows), denoted C(a,b),

e for each three objects a,b and ¢, a composition operation, denoted ;: C(a,b) x C(b,c) — C(a,c) such that the following

azioms hold:
— if f € C(a,b), g € C(b,c) and h € C(c,d) for four objects a,b,c,d, then f;(g;h) = (f;9);h
— for each object a there is a morphism id, € C(a,a) such that for every f € C(a,b) and every g € C(b,a) for
some object b we have that ide; f = f and g;id, = g.

ExaMPLE  Set is the category whose class of objects is the class of all sets, Set(A, B) is the set of all functions from A to
B for any sets A and B, id4 is the identity function on a set A and the composition is the usual composition of functions.

ExAMPLE Rel is the category whose class of objects is the class of all sets, Rel(A, B) is the class of all relations R C Ax B,
for any sets A and B, id4 is the diagonal relation {(a,a) | a € A} for a set A and the composition of R € Rel(A, B) with
S € Rel(B,C) for three sets A, B, C is defined as {(a, ¢) | exists b € B such that (a,b) € R and (b,c) € S}.

ExaMPLE The category of unsorted first-order signatures has as objects tuples of the form F' = (F;);en where F; is a set
(of function symbols of arity 4, for each natural number 7). Given two objects F' and G, a morphism o : F — G is a family
of functions (o; : F; — Gi)sen, which means that the arities of function symbols are preserved by morphisms. The identity
morphism for an object F is the family of identity functions (idr,);en and the composition is defined component-wise: if
c:F — G and 7: G — H are signature morphisms between the signatures F, G and H, then o;7 = (0:;7i)ien

ExaMPLE  Given an unsorted first-order signature F, a model M of F consists of an universe My together with an
interpretation of each function symbol f € F; as a function My taking ¢ arguments in My with result in My. Given two
such models M and N, a model homomorphism m : M — N is a function m : My — Ny such that for each ¢« € N and each
f € F; we have that m(My(z1,...,2n)) = Ny(m(z1),...,m(zs)) for every zi1,...z, in My. The identity function on My
is a model homomorphism on M and the composition is the usual composition of functions. This gives us the category of
first-order models of F'.

Definition 22 Let C' and D be two categories. A functor F : C' — D is a mapping that

e assigns to each object ¢ of C' an object F(c) in D,
e assigns to each morphism f € C(c,d) a morphism F(f) € D(F(c), F(d)) such that

— F(id.) = idp(c) for each c € |C|,
— F(f;9) = F(§); F(g) for cach f € C(a,b), g € C(b,c) and a,b,c € |C].
ExaMPLE For each category C, the identity functor idc : C' — C takes each object and each morphism to itself.

ExampPLE  The forgetful functor F' from the category of unsorted first-order models of a signature F' to Set takes each
model M to the set My and each model morphism m : M — N to its underlying function m : My — Ny.

ExaMPLE The covariant powerset functor P : Set — Set maps each set A to the set of all subsets of A and each function
f: A — B to the function that takes a subset X of A to the set {f(z) | z € X}, which is a subset of B.

ExaMPLE The covariant finite powerset functor Py, : Set — Set maps each set A to the set of all finite subsets of A and
each function f: A — B to the function that takes a subset X of A to the set {f(z) | z € X}, which is a subset of B.
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Definition 23 Let C, D be two categories and let F' and G be two functors between C and D. A natural transformation
n: F — G assigns to each object ¢ € |C| a morphism n. : F(c) = G(c) such that for every f € C(c,d) we have that
F(f);n4a = ne; G(c), which means that the following diagram commutes

Fle) =% p(a)

G(c) =i G(d)

EXAMPLE There is an inclusion natural transformation ¢ : Py, — P, i.e. for each set A, v : Prin(A) — P(A) is the
inclusion function (each finite subset of a set is also a subset of the set).
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