
E. Annex: Conformance of UML class and object
diagrams with DOL

(Informative)

This informative annex demonstrates conformance of a subset of UML class and object diagrams with DOL by de�ning
an institution for both. The subset is restricted to the static aspects of class diagrams; that is, change of state is ignored.
This means that all operations are query operations.
The institution of UML class and object diagrams is de�ned using a translation of UML class diagrams to Common Logic,

following the fUML speci�cation and [70].

E.1. Preliminaries
The axioms for primitive types are imported from the fUML speci�cation, section 10.3.1: Booleans, numbers, sequences and
strings. These axiomatize (among others) predicates corresponding to primitive types, e.g. buml:Boolean, form:Number,
form:NaturalNumber, buml:Integer, form:Sequence, form:Character, and buml:String.
The following infrastructure, consisting o� a number of predicates axiomatized in Common Logic, provides a foundation

for an institution for UML class diagrams described in the later sections of this Annex.

logic CLIF

oms pairs =
(forall (x y) (= (form:first (form:pair x y)) x))
(forall (x y) (= (form:second (form:pair x y)) y))
(forall (x y) (form:Pair (form:pair x y)))
(forall (p) (if (form:Pair p)

(= (form:pair (form:first p) (form:second p)) p)))
end

oms sequences =
fuml:sequences.clif and pairs
then

// fuml:sequence - membership of an element in a sequence
(forall (x s)

(if (form:sequence-member x s)
(form:Sequence s)))

(forall (x s)
(iff (form:sequence-member x s)

(exists (pt)
(and (form:in-sequence s pt)

(form:in-position pt x)))))

// selection of elements
(forall (o) (= (form:select1 o form:empty-sequence) form:empty-sequence))
(forall (o y s)

(= (form:select1 o (form:sequence-insert (form:pair o y) s))
(form:sequence-insert y (form:select1 o s))))

(forall (o x y s)
(if (not (= x o))

(= (form:select1 o (form:sequence-insert (form:pair x y) s))
(form:select1 o s))))

(forall (o) (= (form:select2 o form:empty-sequence) form:empty-sequence))
(forall (o x s)

86

E. Annex: Conformance of UML class and object diagrams with DOL

(= (form:select2 o (form:sequence-insert (form:pair x o) s))
(form:sequence-insert x (form:select2 o s))))

(forall (o x y s)
(if (not (= y o))

(= (form:select2 o (form:sequence-insert (form:pair x y) s))
(form:select2 o s))))

(forall (i s)
(= (form:n-select form:empty-sequence i s)

form:empty-sequence))
(forall (a i s t x)

(if (= (insert-i i x t) s)
(= (form:n-select (form:sequence-insert s a) i t)

(form:sequence-insert s (form:n-select a i t)))))
(forall (a i s t)

(if (not (exists (x) (= (insert-i i x t) s)))
(= (form:n-select (form:sequence-insert s a) i t)

(form:n-select a i t))))

// insert element at i-th position
(forall (x s)

(= (insert-i form:0 x s) (form:sequence-insert x s)))
(forall (i j x y s)

(if (form:add-one i j)
(= (insert-i j x (form:sequence-insert y s))

(form:sequence-insert y (insert-i i x s)))))
end

oms sequences-insert =
sequences then
// insertion of elements
(forall (x s1 s2)
// inserting an element means...
(if (= (form:sequence-insert x s1) s2)

(and (form:Sequence s1)
(form:Sequence s2)
// the new element is at the first position
(form:in-position-count s2 form:1 x)
// and all other elements are shifted by one
(forall (n1 n2 y)
(if (form:add-one n1 n2)

(iff (form:in-position-count s1 n1 y)
(form:in-position-count s2 n2 y)))))))

// synonym
(forall (s) (= (form:sequence-length s) (form:sequence-size s)))

end

oms ordered-sets =
sequences with
form:Sequence |-> form:Ordered-Set,
form:empty-sequence |-> form:empty-ordered-set,
form:sequence-length |-> form:ordered-set-size,
form:same-sequence |-> form:same-ordered-set,
form:sequence-member |-> form:ordered-set-member,
form:in-sequence |-> form:in-ordered-set,
form:before-in-sequence |-> form:before-in-ordered-set,
form:position-count |-> form:ordered-set-position-count,
form:in-position-count |-> form:in-ordered-set-position-count

then
//Different positions contain different elements
(forall (s x1 x2 n1 n2)

(if (and (form:in-ordered-set-position-count s n1 x1)

87

E. Annex: Conformance of UML class and object diagrams with DOL

(form:in-ordered-set-position-count s n2 x2)
(= x1 x2))

(= n1 n2)))
// insertion of elements
(forall (x s1 s2)
(if (= (form:ordered-set-insert x s1) s2)

(and (form:Ordererd-Set s1)
(form:Ordererd-Set s2)

// no element can be inserted twice
(forall (x s)

(if (from:ordered-set-member x s)
(= (form:ordered-set-insert x s) s)))

// inserting a new element
(forall (x s)

(if (not (from:ordered-set-member x s1))
(exists (s2)
(and (= (form:ordered-set-insert x s1) s2)

// the new element is at the first position
(form:in-ordered-set-position-count s2 form:1 x)
// and all other elements are shifted by one
(forall (n1 n2 y)
(if (form:add-one n1 n2)

(iff (form:in-ordered-set-position-count s1 n1 y)
(form:in-ordered-set-position-count s2 n2 y)))))))

end

oms sets =
//An empty set has no members.
(forall (s)

(if (form:empty-set s)
(form:Set s)))

(forall (s)
(if (form:Set s)

(iff (form:empty-set s)
(not (exists (x)

(form:set-member x s))))))
//Size of sets
(forall (s n)

(if (form:set-size s n)
(and (form:Set s)

(buml:UnlimitedNatural n))))
(= (form:set-size form:empty-set) form:0)
(forall (x s)

(if (not (form:set-member x s))
(exists (n)

(and (form:add-one (form:set-size s) n)
(= (form:set-size (form:set-insert x s))

n)))))

//The same-set relation is true for sets that have the same members.
// but: why not replace same-set with = ?
(forall (s1 s2)

(if (form:same-set s1 s2)
(and (form:Set s1)

(form:Set s2))))
(forall (s1 s2)

(iff (form:same-set s1 s2)
(forall (x)

(iff (form:set-member x s1)
(form:set-member x s2)))))

//Insertion of elements into sets and set membership
(forall (x s)

88

conradb
Sticky Note
Did you intend to support infinite sets? Not that this requires it (only allows it), but UnlimitedNatural in UML includes an infinitely large value. See comment about multiplicity in E.4.

conradb
Sticky Note
Submission shouldn't record issues.

conradb
Sticky Note
Why not define sets as restricted bags (bags with no duplicates), like you did with ordered sets as restricted sequences?
Should be at least:
 (forall (x) (if (form:Set x) (form:Bag x))
plus no-duplicate restriction.

E. Annex: Conformance of UML class and object diagrams with DOL

(if (form:Set s)
(form:Set (form:set-insert x s))))

(forall (x y s)
(iff (form:set-member x (form:set-insert y s))

(or (= x y)
(form:set-member x s))))

end

oms bags =
//An empty bag has no members.
(forall (s)

(if (form:empty-bag s)
(form:Bag s)))

(forall (s)
(if (form:Bag s)

(iff (form:empty-bag s)
(not (exists (x)

(form:bag-member x s))))))
//Size of bags
(forall (s n)

(if (form:bag-size s n)
(and (form:Bag s)

(buml:UnlimitedNatural n))))
(= (form:bag-size form:empty-bag) form:0)
(forall (x s)

(exists (n)
(and (form:add-one (form:bag-size s) n)

(= (form:bag-size (form:bag-insert x s))
n))))

//The same-bag relation is true for bags that have the same members.
(forall (s1 s2)

(if (form:same-bag s1 s2)
(and (form:Bag s1)

(form:Bag s2))))
(forall (s1 s2)

(iff (form:same-bag s1 s2)
(forall (x)

(iff (form:bag-member-count x s1)
(form:bag-member-count x s2)))))

//Insertion of elements into bags and bag membership
(forall (x s)

(if (form:Bag s)
(form:Bag (form:bag-insert x s))))

(forall (x y s)
(iff (form:bag-member x (form:bag-insert y s))

(or (= x y)
(form:bag-member x s))))

//Member count
(forall (x s)

(if (form:Bag s)
(buml:UnlimitedNatural (form:bag-member-count x s))))

(= (form:bag-member-count form:empty-bag) form:0)
(forall (x s)

(exists (n)
(and (form:add-one (form:bag-member-count x s) n)

(= (form:bag-member-count x (form:bag-insert x s))
n))))

(forall (x y s)
(if (not (= x y))

(= (form:bag-member-count x (form:bag-insert y s))
(form:bag-member-count x s))))

89

conradb
Sticky Note
Why not just

 (forall (x s)
 (form:set-member x (form:set-insert x s)))
?

E. Annex: Conformance of UML class and object diagrams with DOL

end

oms collection-types =
sequences-insert and ordered-sets and sets and bags

then
//bag to set
(forall (b)

(if (form:Bag s)
(form:Set (form:bag2set b))))

(= (form:bag2set form:empty-bag) form:empty-set)
(forall (x b)

(if (form:Bag b)
(= (form:bag2set (form:set-insert x b))

(form:bag-insert x (form:bag2set b)))))

//sequence to ordered set
(forall (s)

(if (form:Sequence s)
(form:Ordered-Set (form:seq2ordset s))))

(= (form:seq2ordset form:empty-sequence) form:empty-ordered-set)
(forall (x s)

(if (form:Sequence s)
(= (form:seq2ordset (form:sequence-insert x s))

(form:ordered-set-insert x (form:seq2ordset s)))))

//sequence to bag
(forall (s)

(if (form:Sequence s)
(form:Bag (form:seq2bag s))))

(= (form:seq2bag form:empty-sequence) form:empty-bag)
(forall (x s)

(if (form:Sequence s)
(= (form:seq2bag (form:sequence-insert x s))

(form:bag-insert x (form:seq2bag s)))))

//ordered-set to set
(forall (b)

(if (form:Ordered-Set s)
(form:Set (form:ordset2set b))))

(= (form:ordset2set form:empty-ordered-set) form:empty-set)
(forall (x b)

(if (form:Ordered-Set b)
(= (form:ordset2set (form:set-insert x b))

(form:ordered-set-insert x (form:ordset2set b)))))

//sequence to set
(forall (s)

(if (form:Sequence s)
(form:Set (form:seq2set s))))

(forall (s) (= (form:seq2set s) (form:ordset2set (form:seq2ordset s))))

// leq
(forall (x y)

(iff (buml:leq x y)
(or (= x y)

(buml:less-than x y))))
end

oms uml-cd-preliminaries =
collection-types and pairs

end

90

E. Annex: Conformance of UML class and object diagrams with DOL

E.2. Signatures

Class/data type hierarchies. A class/data type hierarchy (C,≤C) is given by a partial order where the set C contains
the class/data type names, which are closed w.r.t. the built-in data types Boolean, UnlimitedNatural, Integer, Real, and String,
i.e., {Boolean,UnlimitedNatural, Integer,Real, String} ⊆ C; and the partial ordering relation ≤C represents a generalization
relation on C, where c1 is a sub-class/data type of c2 if c1 ≤C c2.
A class/data type hierarchy map γ : (C,≤C) → (D,≤D) is given by a monotone map from (C,≤C) to (D,≤D), i.e.,

γ(c) ≤D γ(c′) if c ≤C c′, such that γ(c) = c for all c ∈ {Boolean,UnlimitedNatural, Integer,Real, String}.

The collection type constructors OrderedSet, Set, Sequence, and Bag are used for representing the meta-attributes �ordered�
and �unique� of MultiplicityElement according to the following table:1

ordered not ordered

unique OrderedSet Set

not unique Sequence Bag

The default is �not ordered� and �unique�.2

For a class/data type c ∈ C of a class/data type-hierarchy (C,≤C) and a collection type constructor

τ ∈ {OrderedSet, Set, Sequence,Bag},

the expression τ [c] denotes the induced collection type.

Let (C,≤C) be a class/data type hierarchy.

� An attribute declaration over (C,≤C) is of the form c.p : τ [c′] with c, c′ ∈ C, τ a collection type constructor, and p an
attribute name. (Attributes and association member ends are distinguished due to their di�erent uses. In UML, both are
of class Property.)

� A query operation declaration over (C,≤C) is of the form c.q(x1 : τ1[c1], . . . , xr : τr[cr]) : τ [c′] with c, c1, . . . , cr, c
′ ∈ C, τ

a collection type constructor, o an operation name, and x1, . . . , xr parameter names.

� An association declaration over (C,≤C) is of the form a(p1 : τ1[c1], . . . , pr : τr[cr]) with r ≥ 2, c1, . . . , cr ∈ C, τ1, . . . , τr
classi�er annotations, a an association name, and p1, . . . , pr member end names.3 An association declaration a = a(p1 :
τ1[c1], . . . , pr : τr[cr]) yields the property declarations a.pi : τi[ci] for 1 ≤ i ≤ r. An association declaration is binary if
r = 2.4

� A composition declaration over (C,≤C) is of the form m(p1 : Set[c1], �p2 : τ2[c2]) with c1, c2 ∈ C, τ2 a collection type
constructor, m a composition name, and p1, p2 member end names. A composition declaration m = m(p1 : Set[c1], �p2 :
τ2[c2]) yields the property declarations m.p1 : Set[c1] and m.p2 : τ2[c2].

In UML, each Property may have AggregationKind composite. However, such an aggregation kind has no semantic meaning
when the property is not a member end of an association: the UML Superstructure Speci�cation 2.4.1 does not mention the
aggregation kind in the description of the semantics of Property, and UML 2.5 explains the use of aggregations for Property as
�to model circumstances in which one instance is used to group together a set of instances� (p. 112, our emphasis). Moreover,
composite properties, i.e., properties with aggregation kind composite can only be member ends of binary associations (UML
Superstructure Speci�cation 2.4.1, p. 37; UML 2.5, p. 228) and their multiplicity must not exceed one (UML Superstructure
Speci�cation 2.4.1, p. 126; UML 2.5, p. 155). Thus, composition declarations are distinguished from general association
declarations.

Class/data type nets (Signatures). A class/data type net Σ = ((C,≤C), P,O,A,M) comprises a class/data type
hierarchy (C,≤C) and a set P of attribute declarations, a set O of operation declarations, a set A of association declarations
over (C,≤C), and a set M of composition declarations over (C,≤C), such that the following properties are satis�ed:

� attribute names are unique along the generalization relation: if c1.p1 : τ1[c′1] and c2.p2 : τ2[c′2] are di�erent property
declarations in P and c1 ≤C c2, then p1 6= p2;

� association and composition names are unique: if d1 and d2 are the names of two di�erent association or composition
declarations in M ∪A, then d1 6= d2;

� member end names are unique: if p1, . . . , pr are the member end names of an association declaration in A or a composition
declaration in M , then pi 6= pj for 1 ≤ i 6= j ≤ r;5

1Cf. UML Superstructure Speci�cation 2.4.1, p. 128; UML 2.5, p. 27.
2UML Superstructure Speci�cation 2.4.1, p. 96; there does not seem to be default in UML 2.5.
3The member ends are ordered according to the UML Superstructure Speci�cation 2.4.1, p. 29; UML 2.5, p. 206; hence they are
represented in a tuple-like notation.

4Only binary association may show member ends that are properties not owned by the association (UML Superstructure Speci�cation
2.4.1, p. 37; UML 2.5, p. 228). The property declarations induced by a more than binary association result in a query operation.

5In UML, member end names need not be unique. However, for (1) a simpler handling of selecting a particular member end in the
sentences and avoiding the use of number selectors, and (2) making the notion of member ends �owned� by a class/data type, this
constraint is added. An association declaration violating this uniqueness constraints can easily be transformed into an association
declaration satisfying it by decorating member end names with the numbers 1, . . . , r.

91

conradb
Sticky Note
Not sure I'm reading this correctly, but it seems to say the properties involved in a composition association are properties of m, whereas they are usually properties of the classes at the ends of the association.

conradb
Sticky Note
Properties can be composed without being member ends of an association. The UML 2.5 spec describes aggregation in the Property subclause (9.5.3), without constraining the properties to be member ends of associations. The phrase quoted here describes a composite property with ("grouping its") values. Feel free to ask Ed and others, this is well known to be the interpretation of the spec, and is implemented in tools.

conradb
Sticky Note
About UnlimitedNatural, see comment on multiplicity, Section E.4.

E. Annex: Conformance of UML class and object diagrams with DOL

� the type of a member end6 owned by a class/data type coincides with its declarations as attribute: a property declaration
a.pi : τi[ci] yielded by a binary association a = a(p1 : τ1[c1], p2 : τ2[c2]) is owned by c0 ∈ C, if c3−i ≤C c0 and there is an
attribute declaration c0.pi : τi[ci] ∈ P ; and similarly for property declarations yielded by composition declarations. (Note
that by the uniqueness of attribute names along the generalization hierarchy only a single attribute with name pi may
exist.)

A class/data type net morphism σ = (γ, ϕ, α, µ) : Σ = ((C,≤C), P,A,M)→ T = ((D,≤D), Q,B,N) is given by

� a class/data type hierarchy map γ : (C,≤C)→ (D,≤D);

� an attribute declaration map ϕ : P → Q such that if ϕ(c.p : τ [c′]) = d.q : τ ′[d′] ∈ Q, then d = γ(c), d′ = γ(c′), and τ = τ ′;

� a query operation declaration map ρ : O → R such that if ρ(c.q(x1 : τ1[c1], . . . , xr : τr[cr]) : τ [c′]) = d.r(x1 : τ ′1[d1], . . . , xr :
τ ′r[dr]) : τ [d′] ∈ R, then d = γ(c), di = γ(ci), d

′ = γ(c′), τ ′i = τi and τ = τ ′;

� an association declaration map α : A→ B such that if α(a(p1 : τ1[c1], . . . , pr : τr[cr])) = b(q1 : τ ′1[d1], . . . , qs : τ ′s[ds]) ∈ B,
then r = s and di = γ(ci) and τi = τ ′i for 1 ≤ i ≤ r, and member ends owned by the association are mapped into owned
member ends;

� a composition declaration map µ : M → N such that if µ(m(p1 : Set[c1], �p2 : τ2[c2])) = n(q1 : Set[d1], �q2 : τ ′2[d2]) ∈ N ,
then d1 = γ(c1), d2 = γ(c2), and τ2 = τ ′2, and member ends owned by the composition are mapped into owned member
ends.

Class/data type nets as objects and class/data type net morphisms as morphisms form the category of class/data type
nets, denoted by Cl.

For the example in Fig. E.1 the class/data type net is

Classes/data types: Net, Station, Line,Connector,Unit,Track,Point, Linear,

Boolean,UnlimitedNatural, Integer,Real, String

Generalizations: Point ≤ Unit, Linear ≤ Unit

Properties: Line.linear : Set[Boolean],Track.linear : Set[Boolean],

Net.station : Set[Station],Net.line : Set[Line],

Station.net : Set[Net], Station.unit : Set[Unit], Station.track : Set[Track],

Line.net : Set[Net], Line.linear : Set[Linear],

Connector.unit : Set[Unit],

Unit.station : Set[Station],Unit.connector : Set[Connector],

Track.station : Set[Station],Track.linear : Set[Linear],

Linear.track : Set[Track], Linear.line : Set[Line]

Associations: l2l(line : Set[Line], linear : Set[Linear]),

l2t(linear : Set[Linear], track : Set[Track]),

c2u(connector : Set[Connector], unit : Set[Unit])

Compositions: n2s(net : Set[Net], �station : Set[Station]),

n2l(net : Set[Net], � line : Set[Line]),

s2u(station : Set[Station], �unit : Set[Unit]),

s2t(station : Set[Station], �track : Set[Track])

Here all member ends are owned by class/data types.

E.3. Models
As stated above, models (in the sense of the term model de�ned in clause 4) of UML class diagrams are obtained via a
translation to Common Logic.
For a classi�er net Σ = ((C,≤C),K, P,M,A), a Common Logic theory CL(Σ) is de�ned consisting of:

� for c ∈ C, a predicate7 CL(c), such that

� CL(Boolean) = buml:Boolean,

� CL(String) = buml:String,

� CL(Integer) = buml:Integer,

� CL(UnlimitedNatural) = form:NaturalNumber,

� CL(Real) = buml:Real,

6All member ends are instances of Property; UML Superstructure Speci�cation 2.4.1, p. 36; UML 2.5, p. 206.
7Strictly speaking, this is just a name.

92

E. Annex: Conformance of UML class and object diagrams with DOL

2..*

1

*

*

1

*

1..4 1

1..*

1

1..*

1

Net

Station Line

linear : Boolean

n2s n2l

Unit Track

linear : Boolean

s2u s2t

Connector c2u

Point Linear l2t

l2l

Figure E.1.: Sample UML class diagram.

� CL(c) = c, if c is an enumeration type with values k1, . . . , kn. In this case, additionally, the Common Logic
theory is augmented by (not (= ki · · · kj)) for i 6= j and (forall (x) (if (c x) (or (= x k1) · · ·
(= x kn)))),

� CL(List[c]) = form:Sequence,

� CL(Set[c]) = form:Set,

� CL(OrderedSet[c]) = form:OrderedSet,

� CL(Bag[c]) = form:Bag,

� CL(c) = c, if c a class name which is not one of the above.

� for each relation c1 ≤C c2, an axiom (forall (x) (if (C1 x) (C2 x))), where C1 = CL(c1), C2 = CL(c2),

� CL maps each attribute declaration c.p : τ [c′] ∈ P to a predicate CL(c.p) and axioms stating type-correctness and
functionality:

� (forall (x y) (if (c.p x y) (c x)))

� (forall (x y) (if (c.p x y) (τ [c′] y))) 8

� (forall (x)
x (if (c x) (exists (y) (c.p x y))))

� (forall (x y z)
x (if (and (c.p x y) (c.p x z))
x x (= y z)))

� CL maps each query operation declaration c.q(x1 : τ1[c1], . . . , xr : τn[cr]) : τ [c′] ∈ O to a predicate CL(c.q) and axioms
stating type-correctness and functionality:

� (forall (x x1 x2 · · · xn y) (if (c.q x x1 x2 · · · xn y) (c x)))

� (forall (x x1 x2 · · · xn y) (if (c.q x x1 x2 · · · xn y) (τi[ci] xi))) for each i = 1 . . . n,9

� (forall (x x1 x2 · · · xn y) (if (c.q x x1 x2 · · · xn y) (τ [c′] y)))

� (forall (x x1 x2 · · · xn y z)
x (if (and (c.q x x1 x2 · · · xn y) (c.q x x1 x2 · · · xn z))
x x (= y z)))

Query operations are modeled as partial functions: they may be unde�ned for certain arguments due to violation of
multiplicity constraints.

8 (τ [c] x) is an abbreviation of either (if τ is present)
(and (τ x) (forall (m) (if (from:τ-member m x) (c’ m)))).
or (if τ is omitted) just (c x).

9Note that the · · · here is meta notation, not a sequence marker.

93

conradb
Sticky Note
Are the labels n2s, etc, association names? If so they should be capitalized. If they are property names, they should be closer to one of the classes at the end of the line.

E. Annex: Conformance of UML class and object diagrams with DOL

� CL maps each composition declaration m(p1 : Set[c1], �p2 : τ2[c2]) ∈ M to a constant CL(m) and axioms stating that
CL(m) is a �nite binary relation represented as a sequence of pairs of the correct type:

(from:Sequence m)
(forall (p) (if (form:sequence-member p m)

(and (form:Pair p) (c1 (form:first p)) (c2 (form:second p))))

In case τ2 is not present or τ2 = Set, this is simpli�ed to a binary relation directly represented as a binary predicate:
(forall (x y) (if (m x y) (and (c1 x) (c2 y))))

� for any pair of composition declarations m(p1 : Set[c1], �p2 : τ2[c2]),m′(p′1 : Set[c′1], �p′2 : τ ′2[c′2]) ∈M , an axiom stating
�each instance has at most one owner�:

(forall (o o’ i)
(if (and (form:sequence-member (form:pair o i) m)

(form:sequence-member (form:pair o’ i) m’))
(= o o’)))

In case m is represented in the simpli�ed way, (form:sequence-member (form:pair o i) m) is replaced by (m
o i), and analogously for m’.

� CL maps each association declaration a(p1 : τ1[c1], . . . , pr : τr[cr]) ∈ A to a predicate CL(a) and axioms stating that
CL(a) is a �nite relation represented as a sequence of tuples of the correct types (the latter again being represented
as sequences)10:
(from:Sequence a)
(forall (t) (if (form:sequence-member t a)
x x (exists (x1 · · · xr)
x x x (and (c1 x1) · · · (cr xr)
(= t (form:sequence-insert x1 (· · · (form:sequence-insert
x x x xr form:empty-sequence))))))))

In case that all the τi are omitted (or, equivalently, equal to Set), the representation is simpli�ed to an n-ary predicate:
(forall (x1 x2 · · · xn) (if (a x1 x2 · · · xn) (and (c1 x1) · · · (cn xn))))

� the interpretation of a member end of a binary association declaration owned by a class/data type coincides with the
interpretation of the attribute: if for i ∈ {1, 2}, a.pi : τi[ci] for a = a(p1 : τ1[c1], p2 : τ2[c2]) ∈ A is owned by c ∈ C
with c.pi : τi[ci] ∈ P , then
(forall (o s)
x (if (c.p o s) (= s (form:seq2τi (form:selecti o a)))))
If a is represented in simpli�ed form, then instead the following is used
(forall (o s)
x (if (c.p o s) (forall (x) (iff (member x s) (a o x)))))

� the interpretation of a member end of a composition declaration owned by a class/data type coincides with the
interpretation of the attribute: if for i ∈ {1, 2}, m.p : τi[ci] for m = m(p1 : Set[c1], �p2 : τ2[c2]) ∈M is owned by c ∈ C
with c.p : τi[ci] ∈ P , then (forall (o s)
x (if (c.p o s) (= s (form:seq2τi (form:selecti o m)))))
Again, if m is represented in simpli�ed form, then the following is used
(forall (o s)
x (if (c.p o s) (forall (x) (iff (member x s) (m o x)))))

It is straightforward to extend CL from signatures to signature morphisms.

Models. A Σ-model of the UML class diagram institution is just a CL(Σ)-model in Common Logic. That is, the UML class
diagram institution inherits models from Common Logic. Moreover, model reducts are inherited as well, using the action of
CL on signature morphisms.

10Ignoring the annotations τi in the interpretation of an association is intentional, see OMG UML version 2.5 (ptc/2013-09-05) in
section 11.5.3: �When one or more ends of the Association have isUnique =false, it is possible to have several links associating the
same set of instances. In such a case, links carry an additional identi�er apart from their end values. When one or more ends of
the Association are ordered, links carry ordering information in addition to their end values.� Similarly in UML Superstructure
Speci�cation 2.4.1, p. 37. The additional information required for links is covered by using sequences of tuples.

94

E. Annex: Conformance of UML class and object diagrams with DOL

E.4. Sentences
The set of multiplicity formulae Frm is given by the following grammar:

Frm ::= NumLiteral ≤ FunExpr
| FunExpr ≤ NumLiteral

FunExpr ::= # Attribute
| # Association . End
| # Composition . End
| # Operation . Param

Attribute ::= Classifier . End :Type
Association ::= Name (End : Type(, End : Type)∗)

Composition ::= Name (End : Set [Classifier], �End : Type)
Operation ::= Name ((NumLiteral ≤ Param ≤ NumLiteral : Type,)∗) : Type

Type ::= Annot [Classifier]
Classifier ::= Name

End ::= Name
Param ::= Name
Annot ::= OrderedSet | Set | Sequence | Bag

NumLiteral ::= 0 | 1 | · · ·

where Name is a set of names and NumLiteral is assumed to be equipped with an appropriate function J−K : NumLiteral → Z.
The set of Σ-multiplicity constraints Mult(Σ) for a class/data type net Σ is given by the multiplicity formulae in Frm

such that all mentioned elements of Association and Composition correspond to association declarations and composition
declarations of Σ, respectively, and the member end name mentioned in the clauses of FunExpr occur in the mentioned
association and composition, respectively.
The translation of a formula ϕ ∈ Mult(Σ) along a class/data type net morphism σ, written as σ(ϕ), is given by applying

σ to associations, compositions, and member end names.

Example For the example in Fig. E.1 there are the following multiplicity formulas:

2 ≤ #n2s(net : Set[Net], �station : Set[Station]).station

#n2s(net : Set[Net], �station : Set[Station]).net = 1

#n2l(net : Set[Net], � line : Set[Line]).net = 1

#s2u(station : Set[Station], �unit : Set[Unit]).station = 1

#s2t(station : Set[Station], �track : Set[Track]).station = 1

1 ≤ #c2u(connector : Set[Connector], unit : Set[Unit]).unit ≤ 4

#c2u(connector : Set[Connector], unit : Set[Unit]).connector = 1

1 ≤ #l2t(track : Set[Track], linear : Set[Linear]).track

#l2t(track : Set[Track], linear : Set[Linear]).linear = 1

1 ≤ #l2t(line : Set[Line], linear : Set[Linear]).line

#l2l(line : Set[Line], linear : Set[Linear]).linear = 1

�x = y� is an abbreviation for the two inequations �x ≤ y� and �y ≤ x�. �x ≤ y ≤ z� is an abbreviation for the two
inequations �x ≤ y� and �y ≤ z�.

E.5. Satisfaction Relation
The satisfaction relation is inherited from Common Logic, using a translation CL(_) of multiplicity formulas to Common
Logic. That is, given a UML class and object diagram Σ, a multiplicity formula ϕ and a Σ-model M (the latter amounts to
a CL(Σ)-model M in Common Logic):

M |=Σ ϕ i� M |=CL(Σ) CL(ϕ)

The translation of multiplicity formulas to Common Logic is as follows:

� CL(` ≤ #c.p : τ [c′]) =
(forall (x y n)
x (if (and (c.p x y) (form:τ-size y n)) (buml:leq J`K n))

95

conradb
Sticky Note
How are unlimited upper bounds represented? This could be the absence of a bound in DOL, I guess. In UML, absence of a bound defaults to 1, so there's no ambiguity translating to DOL this way. Where does UnlimitedNatural come in?

E. Annex: Conformance of UML class and object diagrams with DOL

� CL(` ≤ #a(p1 : τ1[c1], . . . , pr : τr[cr]).pi =
(forall (x1 · · · xi−1 xi+1 · · · xr)
x (if (and (c1 x1) · · · (ci−1 xi−1) (ci+1 xi+1) · · · (cr xr)
x x x (form:sequence-size
x x x x (form:n-select a i [x1 · · · xi−1 xi+1 · · · xr]) n))
x x (buml:leq J`K n)))
If a is represented in simpli�ed form, the following is used instead:
CL(` ≤ #a(p1 : τ1[c1], . . . , pr : τr[cr]).pi =
(forall (x1 · · · xi−1 xi+1 · · · xr)
x (if (and (c1 x1) · · · (ci−1 xi−1) (ci+1 xi+1) · · · (cr xr))
x x (exists (y1 · · · yJ`K)
x x (and (not (= (y1 y2))) · · · (not (= (yJ`K−1 yJ`K)))
x x x x (a x1 · · · xi−1 y1 xi+1 · · · xr)
x x x x · · ·
x x x x (a x1 · · · xi−1 yJ`K xi+1 · · · xr)))))

� CL(` ≤ #m(p1 : Set[c1], �p2 : τ2[c2]).pi) =
(forall (x)
x (if (and (c3−i x) (form:τ-size (form:selecti x m) n))
x x (buml:leq J`K n))
If m is represented in simpli�ed form, the following is used instead:
CL(` ≤ #m(p1 : Set[c1], �p2 : τ2[c2]).p1) =
(forall (x)
x (if (c2 x)
x x (exists (y1 · · · yJ`K)
x x (and (not (= (y1 y2))) · · · (not (= (yJ`K−1 yJ`K)))
x x x x (m y1 x)
x x x x · · ·
x x x x (m yJ`K x)))))
CL(` ≤ #m(p1 : Set[c1], �p2 : τ2[c2]).p2) =
(forall (x)
x (if (c1 x)
x x (exists (y1 · · · yJ`K)
x x (and (not (= (y1 y2))) · · · (not (= (yJ`K−1 yJ`K)))
x x x x (m x y1)
x x x x · · ·
x x x x (m x yJ`K)))))

� CL(` ≤ #c.q(`1 ≤ f1 ≤ `′1 : τ1[c1], . . . , `k ≤ fk ≤ `′k : τk[ck]) : τ [c′]) =
(forall (x x1 x2 · · · xn)
x (if (and (c.q x x1 x2 · · · xn y)
x x (form:τ-size x1 n1)
x x ...
x x (form:τ-size xk nk)
x x (form:τ-size y n)
x x (buml:leq J`1K n1)
x x (buml:leq n1 J`′1K)
x x ...
x x (buml:leq J`kK nk)
x x (buml:leq nk J`′kK))
x x (buml:leq J`K n)))

where J−K : NumLit → Z maps a numerical literal to an integer, and [x1 · · ·xn] abbreviates (form:sequence-insert x1

· · · (form:sequence-insert xn form:empty-sequence)). The translation for FunExpr ≤ NumLiteral is analogous.
In case of simpli�ed representation, the existence of J`K distinct individuals would be replaced with a statement expressing
that if J`K + 1 individuals have the speci�ed property, at least two of them must be equal.

96

