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Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership,
not-for-pro�t computer industry standards consortium that produces and maintains com-
puter industry speci�cations for interoperable, portable, and reusable enterprise applications
in distributed, heterogeneous environments. Membership includes Information Technology
vendors, end users, government agencies, and academia.
OMG member companies write, adopt, and maintain its speci�cations following a mature,

open process. OMG's speci�cations implement the Model Driven Architecture® (MDA®),
maximizing ROI through a full-lifecycle approach to enterprise integration that covers multi-
ple operating systems, programming languages, middleware and networking infrastructures,
and software development environments. OMG's speci�cations include: UML® (Uni�ed
Modeling Language�); CORBA® (Common Object Request Broker Architecture); CWM�
(Common Warehouse Metamodel); and industry-speci�c standards for dozens of vertical mar-
kets.
More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG speci�cations address middleware, modeling and vertical domain frameworks.
All OMG Speci�cations are available from the OMG website at:
http://www.omg.org/spec

Speci�cations are organized by the following categories:

� Business Modeling Speci�cations

� Middleware Speci�cations

� CORBA/IIOP

� Data Distribution Services

� Specialized CORBA

� IDL/Language Mapping Speci�cations

� Modeling and Metadata Speci�cations

� UML, MOF, CWM, XMI

� UML Pro�le

� Modernization Speci�cations

� Platform Independent Model (PIM), Platform Speci�c Model (PSM), Interface Speci-
�cations

� CORBAServices

� CORBAFacilities

ix

http://www.omg.org/spec
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� OMG Domain Speci�cations

� CORBA Embedded Intelligence Speci�cations

� CORBA Security Speci�cations

All of OMG's formal speci�cations may be downloaded without charge from our website.
(Products implementing OMG speci�cations are available from individual suppliers.) Copies
of speci�cations, available in PostScript and PDF format, may be obtained from the Speci�-
cations Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG speci�cations are also available as ISO standards. Please consult http://
www.iso.org.

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements
from ordinary English. However, these conventions are not used in tables or section headings
where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface De�nition Language (OMG IDL) and syntax
elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt.: Exceptions

NOTE: Italic text represents names de�ned in the speci�cation or the name of a document,
speci�cation, or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this speci-
�cation to http://www.omg.org/report_issue.htm.

x

pubs@omg.org
http://www.iso.org
http://www.iso.org
http://www.omg.org/report_issue.htm


0. Submission-Specific Material

0.1. Submission Preface
Fraunhofer FOKUS, MITRE, and Thematix Partners LLC are pleased to submit this joint
proposal in response to the Ontology, Model and Speci�cation Integration and Interoperability
(OntoIOp) RFP (OMG document ad/2013-12-02). The submitter contacts for this submission
are:

� Fraunhofer FOKUS, Andreas Ho�mann, andreas.ho�mann@fokus.fraunhofer.de

� MITRE, Leo Obrst, lobrst@mitre.org

� Thematix Partners LLC, Elisa Kendall, ekendall@thematix.com

Clause 0 of this document contains information speci�c to the OMG submission process
and is not part of the proposed speci�cation. The proposed speci�cation starts with Clause
1 �Scope�.

0.2. Mandatory Requirements

ID RFP requirement How this proposal addresses re-
quirement

6.5.1(a) Proposals shall provide a speci�cation
of a metalanguage for relationships be-
tween the components of logically het-
erogeneous OMS, particularly, given a
language translation from a language
L1 to another language L2, the appli-
cation of the language translation to an
OMS that is written in the language L1.

DOL provides the required transla-
tion construct using syntax O with
translation t, see 9.4 and 10.2.2.
Moreover, DOL provides heterogeneous
interpretations between OMS, see 9.5
and 10.2.3.

6.5.1(b) Proposals shall provide a speci�cation
of a metalanguage for the union of OMS
written in di�erent languages, which
implicitly involves the application of
suitable default translations in order to
reach a common target language.

The syntax for unions is O1 and O2,
see 9.4 and 10.2.2. Default translations
are discussed in 9.4, and DOL's no-
tion of heterogeneous logical environ-
ment explicitly speci�es default trans-
lations, see 11.2.

6.5.1(c) Proposals shall provide a speci�cation
of a metalanguage for importation in
modular OMS.

DOL allows the import of OMS by their
IRI, see 9.4 and 10.2.2.

Continued on next page
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0. Submission-Speci�c Material

Table 0.1 � Continued from previous page

ID RFP requirement How this proposal addresses re-
quirement

6.5.1(d) Proposals shall provide a speci�cation
of a metalanguage for relationships be-
tween OMS and their extracted mod-
ules e.g. the whole theory is a conser-
vative extension of the module.

DOL provides such a construct with
syntax module m : o1 of o2
for sig, see 9.5 and 10.2.3.

6.5.1(e) Proposals shall provide a speci�cation
of a metalanguage for relationships be-
tween OMS and their approximation in
less expressive languages such that the
approximation is logically implied by
the original theory, where the approxi-
mation generally has to be maximal in
some suitable sense.

DOL provides such a construct with
syntax o keep logic, see 9.4 and
10.2.2.

6.5.1(f) Proposals shall provide a speci�cation
of a metalanguage for links such as im-
ports, interpretations, re�nements, and
alignments between OMS/modules.

DOL covers several metalogical rela-
tionships, namely entailments, inter-
pretations, equivalences, re�nements,
alignments and module relations, see
9.5 and 10.2.3.1

6.5.1(g) Proposals shall provide a speci�cation
of a metalanguage for combination of
OMS along links.

DOL provides such a construct with
syntax combine n, where n is a net-
work of OMS and mappings (links), see
9.4 and 10.2.2.

6.5.2(a) The constructs of the metalanguage
shall be applicable to di�erent logics.

The semantics of DOL is based on
a heterogeneous logical environment,
which can contain arbitrary logics, see
11.2.

6.5.2(b) The metalanguage shall neither be re-
stricted to OMS in a speci�c domain,
nor to OMS represented in a speci�c
logical language.

The semantics of DOL is based on
a heterogeneous logical environment,
which can contain arbitrary logics, see
11.2.

6.5.2(c) The metalanguage shall not replace the
object language constructs of the con-
forming logical languages.

A BasicOMS is explicitly de�ned to be
a OMSInConformingLanguage, and
the syntax of the latter is left unspec-
i�ed in this standard. Rather, here
this standard relies on other standards
and language de�nitions. See 9.4 and
10.2.2.

6.5.2(d) The metalanguage shall provide syntac-
tic constructs for (i) structuring OMS
regardless of the logic in which their
sentences are formalized and (ii) basic
and structured OMS and facilities to
identify them in a globally unique way.

For basic OMS, see 6.5.2(c) above. The
structuring constructs for OMS in 9.4
and 10.2.2 can be used for any logic,
see the semantics in 11.2. DOL uses
IRIs for referencing OMS, see 9.7.1.

Continued on next page
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Table 0.1 � Continued from previous page

ID RFP requirement How this proposal addresses re-
quirement

6.5.3(a) An abstract syntax speci�ed as an
SMOF compliant meta model.

Currently, the abstract syntax is speci-
�ed using EBNF, see clause 9. An ini-
tial SMOF meta model is given in an-
nex K.

6.5.3(b) A human-readable lexical concrete syn-
tax in EBNF and serialization in XML,
for the latter XMI shall be used.

The concrete syntax (in EBNF) is spec-
i�ed in clause 10. The XMI representa-
tion will be automatically derived from
the SMOF meta model.

6.5.3(c) Complete round-trip mappings from
the human-readable concrete syntax to
the abstract syntax and vice versa.

Both abstract syntax (clause 9) and
concrete syntax (clause 10) use the
same non-terminal symbols in their
EBNF grammar; this makes a round-
trip mapping between both straight-
forward. Moreover, the round-trip
mapping has been implemented in form
of a parser and a printer as part of
the heterogeneous tool set (see http:
hets.eu).

6.5.3(d) A formal semantics for the abstract
syntax.

The formal semantics is given in clause
11.

6.5.4(a) Existing OMS in existing serializations
shall validate as OMS in the metalan-
guage with a minimum amount of syn-
tactic adaptation.

Any document providing an OMS in a
serialization of a DOL conformant lan-
guage can be used as-is in DOL, by ref-
erence to its IRI. See 10.5.

6.5.4(b) It shall be possible to refer to existing
�les/documents from an OMS imple-
mented in the metalanguage without
the need for modifying these �les/doc-
uments.

Documents can be referenced by IRIs,
see 9.7.1.

6.5.4(c) Translations between logical languages
shall preserve (possibly to di�erent de-
grees) the semantics of the logical lan-
guages. Between a given pair of logical
languages, several translations are pos-
sible.

The semantics of DOL is based
on a heterogeneous logical environ-
ment, which contains institution co-
morphisms as translations, see 11.2. In-
stitution comorphisms preserve seman-
tics in a weak form through their sat-
isfaction condition. The LoLa ontology
speci�es properties of translations (co-
morphisms) preserving more and more
of the semantics, see annex A.

6.5.5(a) Informative annexes shall establish the
conformance of a number of relevant
logical languages. An initial set of lan-
guage translations may be part of an
informative annex.

For conformance of logical languages,
see 6.5.5(b) below. Conformance of
some translations is established in an-
nex G.

Continued on next page

xiii

http:hets.eu
http:hets.eu


0. Submission-Speci�c Material

Table 0.1 � Continued from previous page

ID RFP requirement How this proposal addresses re-
quirement

6.5.5(b) Conformance of the following subset of
logical languages shall be established:
OWL2 (with pro�les EL, RL, QL),
CLIF, RDF, UML class diagrams.

We establish conformance of OWL 2
(annex B), CLIF (annex C), RDF and
RDFS (annex D) and UML class dia-
grams (annex E) with DOL.

6.5.5(c) Conformance of a suitable set of trans-
lations among the languages mentioned
in the previous bullet point shall be es-
tablished.

Conformance of some translations is es-
tablished in annex G.

6.5.6 Existing standards and best practices
for allocating globally unique identi�ers
shall be reused. The same standards
and best practices shall also be applied
to associate di�erent representations of
the same content to one unique identi-
�er.

DOL uses IRIs to reference documents
(both DOL documents, as well as docu-
ments written in some conforming lan-
guage). See 9.7.1.

0.3. Optional Requirements

ID RFP requirement How this proposal addresses re-
quirement

6.6.1 Submissions may include additional
languages without a standardized
model theory.

This is left for future work.

6.6.2 Proposals may provide constructs for
non-monotonic logics.

Currently, only monotonic logics are
supported. However, DOL provides
a circumscription-like non-monotonic
structuring construct with syntax o1
then %minimize o2, see 9.4 and
10.2.2.

6.6.3 A characterization of the trade-o�s
among di�erent translations.

This is left for future work.

xiv
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0.4. Issues to be discussed

ID Discussion item Resolution

6.7.(a) Do existing language standards need
to be extended or adapted in order to
make them OntoIOp conforming.

The goal of DOL is to support ex-
isting languages without any adapta-
tions, see also 6.5.4(a). However, in or-
der to meet requirement 6.5.6, DOL-
conforming languages should support
the use of IRIs. If they do not, there is a
mechanism for assigning IRIs to (frag-
ments of) language documents even if
the language itself does not support
this, see 2.2. Moreover, there is a mech-
anism for injecting IRIs in existing lan-
guage serializations, see 10.5 and 8.7.

6.7.(b) Proposals should discuss whether the
semantics of the metalanguage shall be
included into the standard

We have included the DOL metalan-
guage semantics in this speci�cation.
The reasons are discussed in the intro-
duction of clause 11.

6.7.(c) Proposals should discuss the chosen list
of logics and translations.

The chosen list of logics and transla-
tions is discussed in the introduction of
annex G.

6.7.(d) Proposals should discuss a meta-
ontology of logical languages and the-
ories.

The LoLa ontology is discussed in an-
nex A.

6.7.(e) Proposals should discuss the use of
QVT for expressing logic translations.

This has been left for future work.

6.7.(f) Proposals should discuss the role of
APIs.

The role of APIs is discussed in section
L.3.

6.7.(g) Proposals should discuss availability
and use of tools.

Tools for DOL are discussed in annex
L.

6.7.(h) Proposals should discuss a registry of
logical languages.

A registry is discussed in clause 2.

xv
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0.5. Evaluation Criteria

ID Criterion Comment

6.8(a) Proposals covering a broader range
of features and of use cases will be
favored. As a minimum, propos-
als shall de�ne conformance criteria
for logical languages and translations,
and their proposed metalanguage shall
cover some metalogical relationships
and shall be applicable to multiple log-
ics.

Conformance criteria for logical lan-
guages are de�ned in 2.1 and those for
translations in 2.1.1. DOL covers sev-
eral metalogical relationships, namely
entailments, interpretations, equiva-
lences, re�nements, alignments and
module relations, see 9.5 and 10.2.3.
DOL is applicable to multiple logics
(see also 6.8(c) below).2

6.8(b) Proposals covering existing language
standards without (or with fewer) mod-
i�cations will be favored.

Any document providing an OMS in a
serialization of a DOL conforming lan-
guage can be used as-is in DOL, by ref-
erence to its IRI. See 10.5.

6.8(c) Proposals establishing actually (or
making this at least possible in theory)
OntoIOp conformance of more logical
languages and translations will be fa-
vored.

We establish conformance of OWL 2
(annex B), Common Logic (annex C),
RDF and RDFS (annex D), UML class
diagrams (annex E) and Casl (annex
F) with DOL.

3 Note(2)

0.6. Proof of Concept
Prototypical open source tools for DOL are already available, see annex L. It is expected that
they will reach industrial strength within two or three years.

0.7. Changes to Adopted OMG Specifications
This speci�cation proposes no changes to adopted OMG speci�cations.

3
Note: in 6.8(c), also mention at least UML class diagrams

xvi



1. Scope
This OMG Speci�cation speci�es the Distributed Ontology, Modeling and Speci�cation Lan-
guage (DOL). DOL is designed to achieve integration and interoperability of ontologies, spec-
i�cations and models (OMS for short). DOL is a language for distributed knowledge represen-
tation, system speci�cation and model-driven development across multiple OMS, particularly
OMS that have been formalized in di�erent OMS languages. This OMG Speci�cation re-
sponds to the OntoIOp Request for Proposals [22].

1.1. Background Information
Logical languages are used in several �elds of computing for the development of formal,
machine-processable texts that carry a formal semantics. Among those �elds are 1)Ontologies
formalizing domain knowledge, 2) (formal)Models of systems, and 3) the formal Speci�cation
of systems. Ontologies, models and speci�cations will (for the purpose of this document)
henceforth be abbreviated as OMS.
An OMS provides formal descriptions which range in scope from domain knowledge and

activities (ontologies, models) to properties and behaviors of hardware and software systems
(models, speci�cations). These formal descriptions can be used for the analysis and veri�ca-
tion of domain models, system models and systems themselves, using rigorous and e�ective
reasoning tools. As systems increase in complexity, it becomes concomitantly less practical to
provide a monolithic logical cover for all. Instead various models are developed to represent
di�erent viewpoints or perspectives on a domain or system. Hence, interoperability becomes
a crucial issue, in particular, formal interoperability, i.e. interoperability that is based on
the formal semantics of the di�erent viewpoints. Interoperability is both about the ability
to interface di�erent domains and systems, to enable the use of several OMS in a common
application scenario, as well as about coherence and consistency, ensuring at an early stage
of the development that a coherent system can be reached.

4 In complex applications, which involve multiple OMS with overlapping concept spaces, Note(4)
data mapping may also be between di�erent OMS, and is then called OMS . While OMS
alignment is most commonly studied for OMS formalized in the same OMS language, the
di�erent OMS used by complex applications may also be written in di�erent OMS languages,
even if they have di�erent levels of expressiveness. This OMG Speci�cation faces this diver-
sity not by proposing yet another OMS language that would subsume all the others. Instead,
it accepts the diverse reality and formulates means (on a sound and formal semantic basis) to
compare and integrate OMS that are written in di�erent formalisms. It speci�es DOL (Dis-
tributed Ontology, Modeling and Speci�cation Language), a formal language for expressing
not only OMS but also mappings between OMS formalized in di�erent OMS languages.
Thus, DOL gives interoperability a formal grounding and makes heterogeneous OMS and

services based on them amenable to checking of coherence (e.g. consistency, conservativity,
intended consequences, and compliance).

4
Note: @Till: the beginning of this paragraph needs revision

1



1. Scope

5 Note(5)

1.2. Features within Scope
The following are within the scope of this OMG Speci�cation:

1. homogeneous OMS as well as heterogeneous OMS (the combining parts written in
di�erent languages)

2. mappings between OMS (mapping OMS symbols to OMS symbols)

3. OMS as well as OMS networks (the latter involve several OMS and mappings between
them)

4. translations between di�erent OMS languages conforming with DOL (translating whole
OMS to another language)

5. annotation and documentation of OMS, mappings between OMS, symbols, and sen-
tences

6. recommendations of vocabularies for annotating and documenting OMS

7. a syntax for embedding the constructs mentioned under (1)�(5) as annotations into
existing OMS

8. a syntax for expressing (1)�(4) as stando� markup that points into existing OMS

9. a formal semantics of (1)�(4)

10. criteria for existing or future OMS languages to conform with DOL

The following are outside the scope of this OMG Speci�cation:

1. the (re)de�nition of elementary OMS languages, i.e. languages that allow the declara-
tion of OMS symbols (non-logical symbols) and stating sentences about them

2. algorithms for obtaining mappings between OMS

3. concrete OMS and their conceptualization and application

4. mappings between services and devices, and de�nitions of service and device interop-
erability.

This OMG Speci�cation describes the syntax and the semantics of the Distributed On-
tology, Modeling and Speci�cation Language (DOL) by de�ning an abstract syntax and an
associated model-theoretic semantics for DOL.

5
Note: State somewhere: A DOL theory is at level M1 in MDA speak, the same level as an UML
diagram. Also a DOL OMS network, containing interpretations, alignments between OMS etc. is at
level M1. The specification of DOL lives at M2, like the UML specification. Both are written in MOF.

2



2. Conformance
This clause de�nes conformance criteria for languages and logics that can be used with the
distributed ontology, modeling and speci�cation language DOL, as well as conformance cri-
teria for serializations, translations and applications. This OMG Speci�cation describes the
conformance with DOL of a number of OMS languages, namely OWL 2, Common Logic,
RDF and RDFS, as well as translations among these, in its informative annexes.
It is expected that DOL will be used for more languages than this normative set of DOL-

conforming languages. There will be a registry for DOL-conforming languages and
translations hosted at http://ontohub.org. This will ensure that this OMG Speci�ca-
tion remains interoperable with past, present and even future OMS languages. The registry
shall also include descriptions of DOL-conforming languages and translations (as well as other
information needed by implementors and users) in machine-processable form.
There will be Maintenance Authority (MA)1 established to maintain the registry as an

informative resource governed by the standard. The registry contents itself will not be nor-
mative; however, it is expected to become the basis for normative activities.

2.1. Conformance of an OMS language/a logic with
DOL

Rationale: for an OMS language to conform with DOL,

� its logical language aspect either needs to satisfy certain criteria about its abstract
syntax or formal semantics itself, or there must be a translation (again satisfying certain
criteria) to a language that already is DOL-conforming.

� its structuring language aspect (if present) must not con�ict with DOL's own structur-
ing mechanisms

� its annotation language aspect must not con�ict with DOL's meta-language constructs.

We also de�ne di�erent conformance levels with respect to the usage of IRIs as identi�ers for
all kinds of entities that the OMS language supports.
An OMS language is conforming with DOL if it satis�es the following conditions:

1. its abstract syntax is speci�ed as an SMOF compliant meta model or as an EBNF
grammar;

2. its logical language aspect (for expressing basic OMS) is conforming, and in particular
has a semantics (see below),

3. it has at least one serialization in the sense of section 2.2;

4. either there exists a translation of it into a conforming language2, or:

1or, depending on advisability, a Registration Authority
2For example, consider the translation of OBO1.4 to OWL, giving a formal semantics to OBO1.4.

3
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2. Conformance

a) the logical language aspect (for expressing basic OMS) is conforming, and in
particular has a semantics (see below),

b) the structuring language aspect (for expressing structured OMS and relations
between those) is conforming (see below), and

c) the annotation language aspect (for expressing comments and annotations) is
conforming (see below).

The logical language aspect of an OMS language is conforming with DOL if each logic
corresponding to a pro�le (including the logic corresponding to the whole logical language
aspect) is presented as an institution [17]. 3 Note that one OMS language can have several
sublanguages or pro�les corresponding to several logics (for example, OWL 2 has pro�les EL,
RL and QL, apart from the whole OWL 2 itself).
The structuring language aspect of an OMS language is conforming with DOL if it can

be mapped to DOL's structuring language in a semantics-preserving way. The structuring
language aspect may be empty.
The annotation language aspect of an OMS language is conforming with DOL if its con-

structs have no impact on the semantics. The annotation language aspect shall be non-empty;
it shall provide the facility to express comments.
We de�ne the following levels of conformance of the abstract syntax of a basic OMS lan-

guage with DOL, listed from highest to lowest:

Full IRI conformance The abstract syntax speci�es that IRIs be used for identifying all
symbols and entities.

No mandatory use of IRIs The abstract syntax does not require IRIs to be used to identify
entities. Note that this includes the case of optionally supporting IRIs without enforcing
their use (such as in Common Logic).

Any conforming language and logic shall have a machine-processable description as detailed
in clause 2.3.

2.1.1. Conformance of language/logic translations with DOL
Rationale: a translation between logics must satisfy certain criteria in order to conform with
DOL. Also, a translation between OMS languages based on such logics must be consistent with
the translation between these logics. Translations should break neither structuring language
aspects nor comments/annotations.
A logic translation is conforming with DOL if it is presented either as an institution mor-

phism or as an institution comorphism.
A language translation is conforming with DOL if it is a mapping between the abstract

syntaxes that restricts to a conforming logic translation when restricted to the logical language
aspect. Language translations may also translate the structuring language aspect, in this
case, they shall preserve the semantics of the structuring language aspect. Furthermore,
language translations should preserve comments and annotations. All comments attached
to a sentence (or symbol) in the source should be attached to its translation in the target
(if there are more than one sentences (resp. symbols) expressing the translation, to at least
one of them).

3Institutions are necessarily monotonic; conformance criteria for non-monotonic logics are still under
development. However, minimization provides non-monotonic reasoning in DOL. It is also possible
to include non-monotonic logics by construing entailments between formulas as sentences of the
institution.
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2.2. Conformance of a serialization of an OMS
language with DOL

Rationale: The main reason for the following speci�cations is identi�er injection. DOL is
capable of assigning identi�ers to entities (symbols, axioms, modules, etc.) inside fragments
of OMS languages that occur in a DOL document, even if that OMS language doesn't support
such identi�ers by its own means. Such identi�ers will be visible to a DOL tool, but not to
a tool that only supports the OMS language. To achieve this without breaking the formal
semantics of that OMS language, we make use of annotation or commenting features that
the OMS language supports, in order to place such identi�ers inside annotations/ comments.
Depending on the nature of the concrete given serialization of the OMS language, be it plain
text, some serialization of RDF, XML, or some other structured text format, we can be more
speci�c about what the annotation/commenting facilities of that serialization must look like
in order to support this identi�er injection. Well-behaved XML and RDF schemas support
identi�er injection in a `nice' way (rather than using text-level comments). In the worst
case we cannot inject anything into an OMS language fragment, because the OMS language
serialization simply wouldn't allow us to write suitable comments, but we'd have to point
into it from the enclosing context by by using stando� markup.
Further conformance criteria in this section are introduced to facilitate the convenient reuse

of verbatim fragments of OMS language inside a DOL document.
Independently from these criteria, we distinguish di�erent levels of conformance of a serial-
ization with respect to its means of conveniently abbreviating long IRI identi�ers.
We de�ne four levels of conformance of a serialization of an OMS language with DOL.

XMI conformance An XMI serialization has been automatically derived from the SMOF
speci�cation of the abstract syntax, using MOF 2 XMI Mapping.6 Note(6)

XML conformance The given serialization has to be speci�ed as an XML schema, which
satis�es all of the following conditions:

� The elements of the schema belong to one or more non-empty XML namespaces.7 Note(7)

� The serialization shall use XML elements to represent all structural elements of
an OMS.

� The schema shall not forbid both attributes and child elements from foreign
namespaces (here: the DOL namespace http://www.omg.org/spec/DOL/0.
8/xml) on any elements.4

RDF conformance The given serialization has to be speci�ed as an RDF vocabulary, which
satis�es all of the following conditions:

� The elements of the vocabulary belong to one or more RDF namespaces identi�ed
by absolute URIs.

� The serialization shall specify ways of giving IRIs or URIs to all structural ele-
ments of an OMS. 8 5 9 Note(8)

6
Note: Christoph to all: I’m not sure how MOF and XMI works, i.e. how to inject identifiers into comments
there.

7
Note: FYI: That means that in a heterogeneous OMS we can recognize that a sentence is, e.g., stated
in OWL, without explicitly “tagging” it as “OWL” (which we would have to do in the case of a serialization
that is merely text conforming).

4This is because either an attribute or a child element will be used to inject identi�ers into elements

5

http://www.omg.org/spec/DOL/0.8/xml
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Note(9)
� There shall be no additional rules (stated in writing in the speci�cation of the
serialization, or formalized in its implementation in, e.g., OWL) that forbid prop-
erties from foreign vocabulary namespaces to be stated about arbitrary subjects
for the purpose of annotation.

Text conformance The given serialization has to satisfy all of the following conditions:

� The serialization conforms with the requirements for the text/plain media type
speci�ed in IETF/RFC 2046, section 4.1.3.

� The serialization shall provide a designated comment construct that can be placed
su�ciently �exible as to be uniquely associated with any non-comment construct
of the language. That means, for example, one of the following:

� The serialization provides a construct that indicates the start and end of
a comment and may be placed before/after each token that represents a
structural element of an OMS.

� The serialization provides line-based comments (ranging from an indicated
position to the end of a line) but at the same time allows the �exible place-
ment of line breaks before/after each token that represents a structural ele-
ment of an OMS.

Standoff markup conformance An OMS language is stando� markup conforming with DOL
if one of its serializations conforms with the requirements for the text/plain media type
speci�ed in IETF/RFC 2046, section 4.1.3. Note that conformance with text/plain is a
prerequisite for using, for example, fragment URIs in the style of IETF/RFC 5147 for
identifying text ranges.

10 Note(10)
Independently from the conformance levels given above, there is the following hierarchy

of conformance w.r.t. CURIEs (compact URIs) as a means of abbreviating IRIs, listed from
highest to lowest:

of the XML serialization; cf. clause 10.5.
8
Note: Christoph (2014-03-26): The rationale is that RDF in principle allows for identifying everything, so
an RDF-based serialization of an OMS language should not forbid making use of such RDF constructs
that do allow for identifying arbitrary things.

5The OWL RDF serialization, for example, does not satisfy the RDF conformance level, for the
following reason. There is an owl:imports property but no class representing imports. There-
fore, it is not possible to represent a concrete import, of an ontology O1 importing an ontol-
ogy O2, as a resource, which could have an identi�er. RDF rei�cation would allow for giv-
ing the statement O1 owl:imports O2 an identi�er. However, the RDF triples resulting from
this rei�cation, including, e.g., the triple :import_id rdf:predicate owl:imports, would
not match the head of any rule in the mapping from RDF graphs to the OWL structural spec-
i�cation http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/#Mapping_
from_RDF_Graphs_to_the_Structural_Specification). They would thus remain left over
in the RDF graph that is attempted to be parsed into an OWL ontology, and thus violate the
requirement that at the end of this parsing process, the RDF graph must be empty.

9
Note: Q-AUT: Update on 2014-10-09: Is it OK to have this footnote here? Or if not, where should it
go? I believe it answers the following question:
And what if it doesn’t? e.g. OWL doesn’t specify IRIs for import declarations, so we can, e.g., not
annotate them when using the RDF serialization of OWL. We could only do it via RDF reification, or by
using an XML serialization.

10
Note: FYI: The latter two seem trivial, but we need them to rule out ad hoc diagrams drawn on a napkin
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2. Conformance

Prefixed CURIE conformance The given serialization allows non-logical symbol identi�ers
to have the syntactic form of a CURIE, or any subset of the CURIE grammar that
allows named pre�xes (prefix:reference). The serialization is not required to
support CURIEs with no pre�x.
Informative comment: In this case, a pre�x map with multiple pre�xesmay be used to
map the non-logical symbol identi�ers of a basic OMS to IRIs in multiple namespaces
(cf. clause 9.7.3)

Non-prefixed names only The given serialization only supports CURIEs with no pre�x, or
any subset of the grammar of the REFERENCE nonterminal in the CURIE grammar.
Informative comment: In this case, a binding for the empty pre�x has to be declared,
as this is the only possibility of mapping the identi�ers of the basic OMS to IRIs, which
are located in one �at namespace.

CURIEs that have a pre�x may not be acceptable identi�ers in every serialization of a
basic OMS language, as the standard CURIE separator character, the colon (:), may not be
allowed in identi�ers. 11 Therefore, the declaration of DOL-conformance of the respective Note(11)
serialization (cf. clause 2.2) may de�ne an alternative CURIE separator character, or it may
forbid the use of pre�xed CURIEs altogether.
Any conforming serialization of an OMS language shall have a machine-processable de-

scription as detailed in clause 2.3.

2.3. Machine-processable description of conforming
languages, logics, and serializations

Rationale: When a parser processes a DOL OMS found somewhere, which refers to modules in
OMS languages, or includes them verbatim, the parser needs to know what language to expect;
further DOL-supporting software needs to know, e.g., what other DOL-conforming languages
the module in the given OMS language can be translated to. Therefore we require that all
languages/logics/serializations that conform with DOL describe themselves in a machine-
comprehensible way.
For any conforming OMS language, logic, and serialization of an OMS language, it is re-

quired that it be assigned an HTTP IRI, by which it can be identi�ed. It is also required
that a machine-processable description of this language/logic/serialization be retrievable by
dereferencing this IRI, according to the linked data principles. At least there has to be an
RDF description in terms of the vocabulary speci�ed in annex A, which has to be made
available in the RDF/XML serialization when a client requests content of the MIME type ap-
plication/rdf+xml. Descriptions of the language/logic/serialization in further representations,
having di�erent content types, may be provided.12 Note(12)

2.4. Conformance of a document with DOL
Rationale: for exchanging DOL documents with other users/tools, nothing that has a formal
semantics must be left implicit. One DOL tool may assume that by default any OMS frag-

11
Note: Q-ALL: I recall that in the 2012-04-18 teleconference we agreed on this – but does it really make
sense? Are there any relevant OMS language serializations that do not allow : in identifiers (or that do
allow it theoretically but discourage it in practice) but allow some other non-letter character?

12
Note: FYI: that opens the door for, e.g., OMDoc
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ments inside a DOL document are in some �xed OMS language unless speci�ed otherwise,
but another DOL tool can't be assumed to understand such DOL documents. Defaults are,
however, practically convenient, which is the reason for having the following section about
the conformance of an application.
A document conforms with DOL if it contains a DOL text that is well-formed according

to the grammar. That means, in particular, that any information related to logics has to be
made explicit (as foreseen by the DOL abstract syntax speci�ed in clause 9), such as:

� the logic of each OMS that is part of the DOL document,

� the translation that is employed between two logics (unless it is one of the default
translations speci�ed in annex G)

However, details about aspects of an OMS that do not have a formal, logic-based semantics,
may be left implicit. For example, a conforming document may omit explicit references to
matching algorithms that have been employed in obtaining an alignment.

2.5. Conformance of an application with DOL
In practice, DOL-aware applications may also deal with documents that are not conforming
with DOL according to the criteria established in clause 2.4. However, an application only
conforms with DOL if it is capable of producing DOL-conforming documents as its output
when requested.
We expect most DOL-aware applications to support a �xed (possibly extensible) set of OMS

languages conforming with DOL. It is, for example, possible that a DOL-aware application
only supports OWL and Common Logic. In that case, the application may process documents
that mix OWL and Common Logic ontologies without explicitly declaring the respective logics,
as the respective syntaxes of OWL and Common Logic can be distinguished by examining
the di�erent keywords. However, for DOL conformance, that application has to be capable
of exporting documents with explicit references to the logics used.

13 Note(13)
14

Note(14)

13
Note: applications need to strip DOL annotations from embedded fragments in other OMS languages

14
Note: applications need to be able to expand CURIEs into IRIs when requested
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15 16 17 Note(15)

Note(16)

Note(17)

15
Note: more, see RFP

16
Note: introduce a separate reference scheme for normative references

17
Note: Q-ALL: I have listed them roughly in the order of occurrence: OK?
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4. Terms and Definitions
18 Note(18)
For the purposes of this document, the following terms and de�nitions apply.

4.1. Distributed Ontology, Modeling and Specification
Language

Distributed Ontology, Modeling and Specification Language; DOL language for
formalizing libraries of OMS and OMS networks, whose syntax and semantics are speci�ed
in this OMG Speci�cation

Note When viewed as an OMS language, DOL has OMS as its non-logical symbols, and
OMS mappings as its sentences.

library collection of named OMS and OMS networks, possibly written in di�erent OMS
languages, linked by named OMS mappings

4.2. Basic OMS

OMS (ontology, specification or model) collection of expressions (like non-logical sym-
bols, sentences and structuring elements) in a given OMS language (or several such lan-
guages).
Note An OMS can be written in di�erent OMS language serializations.
Note An OMS is either a basic or a structured OMS.
Note An OMS has a single signature and model class over that signature as its model-
theoretic semantics.

basic OMS; flat OMS signature equipped with a set of sentences and annotations, which
may be used as a building block for a larger OMS
Note The sentences must use only those non-logical symbols that are present in the
signature.

OMS language language equipped with a formal, declarative, logic-based semantics, plus
non-logical annotations
Note An OMS language is used for the formal speci�cation of OMS.
Example OMS languages include OWL 2 DL, Common Logic, F-logic, UML class dia-
grams, RDFS, and OBO.

18
Note: OMG specifications shall not contain glossaries, hence always refer to this section if definitions
of terms are needed.
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non-logical symbol; OMS symbol atomic expression or syntactic constituent of an
OMS that requires an interpretation through a model

Note This di�ers from the notion of �atomic sentence�: such sentences may involve several
non-logical symbols.

Example Non-logical symbols in OWL W3C/TR REC-owl2-syntax:2009 (there called �en-
tities�) comprise

� individuals (denoting objects from the domain of discourse),

� classes (denoting sets of objects; also called concepts), and

� properties (denoting binary relations over objects; also called roles).

This is opposed to logical symbols in OWL, e.g. those for intersection and union of classes.
Example Non-logical symbols in Common Logic ISO/IEC 24707:2007 comprise

� names (denoting objects from the domain of discourse),

� sequence markers (denoting sequences of objects).

This is opposed to logical symbols in Common Logic, e.g. logical connectives and quanti�ers.

signature; vocabulary set (or otherwise structured entity) 19 of non-logical symbols of Note(19)
an OMS
Note The signature of a term is the set of all non-logical symbols occurring in the term.
The signature of an OMS language is the set of all non-logical symbols possible in that
language.
Note The signature of an OMS is usually uniquely determined.

model semantic interpretation of all non-logical symbols of a signature
Note A model of an OMS is a model of the signature of the OMS that moreover satis�es
all the axioms of the OMS.
Note This term refers to model in the sense of model theory (a branch of logic). It is not
to be confused with model in the sense of modeling (i.e., the �M� in OMS).

term syntactic expression either consisting of a single non-logical symbol or recursively
composed of other terms (a.k.a. its subterms)

sentence term that is either true or false in a given model, i.e. which is assigned a truth
value in this model.20 Note(20)
Note In a model, on the one hand, a sentence is always true or false. In an OMS, on the
other hand, a sentence can have several logical statuses: it can be an axiom, if postulated to
be true; a theorem, if proven from other axioms and theorems; a conjecture, if expecting to
be proven from other axioms and theorems; or have another of many possible statuses.
Note A sentence can conform to one or more signatures (namely those signatures con-
taining all non-logical symbols used in the sentence).
Note It is quite common that sentences are required to be closed (i.e. have no free vari-
ables). However, this depends on the OMS language at hand.

19
Note: What about ‘collection‘? Structure is not important here.

20
Note: FYI: From Common Logic, I changed “unit of logical text” to “term”.

12



4. Terms and De�nitions

axiom sentence postulated to be valid (i.e. true in every model)

theorem sentence that has been proven from other axiom s and theorem s

satisfaction relation relation between models and sentences indicating which sentences
hold true in the model

logical theory signature equipped with a set of sentences over the signature

entailment; specialization relation between two OMS expressing that the second one is
logically implied by the �rst one
Note The converse is generalization.

query language OMS language speci�cally dedicated to queries
Example SPARQL, Prolog
Note There are also general purpose OMS languages, which can express both OMS and
queries.

query sentence containing query variables that can be instantiated by a substitution

query variable symbol that will be used in a query and a substitution
Note From an abstract point of view, query variables are just symbols; they are used in
a way that they will be substituted using a substitution. Many OMS languages have special
notations for (query) variables.
Note Usually, query variables are the free variables of a sentence; there can be other
(bound) variables.
Note If there are no variables in an OMS language, constants can be used as query
variables.

substitution OMS mapping that maps query variables of one OMS to complex terms of
another OMS

answer substitution substitution that, when applied to a given query, turns the latter
into a logical consequence of a given OMS 21 Note(21)

4.3. Semantic Web

resourceweb something that can be globally identi�ed
Note IETF/RFC 3986:2005, Section 1.1 deliberately de�nes a resource as �in a general
sense [. . .] whatever might be identi�ed by [an IRI]�. The original source refers to URIs, but
DOL uses the compatible IRI standard IETF/RFC 3987:2005 for identi�cation.
Example Familiar examples include an electronic document, an image, a source of infor-
mation with a consistent purpose (e.g., �today's weather report for Los Angeles�), a service
(e.g., an HTTP-to-SMS gateway), and a collection of other resources. A resource is not nec-
essarily accessible via the Internet; e.g., human beings, corporations, and bound books in a

21
Note: we have to revisit this once we design the abstract syntax of queries etc.

13



4. Terms and De�nitions

library can also be resources. Likewise, abstract concepts can be resources, such as the oper-
ators and operands of a mathematical equation, the types of a relationship (e.g., �parent� or
�employee�), or numeric values (e.g., zero, one, and in�nity). IETF/RFC 3986:2005, Section
1.1

element (of an OMS) any resource in an OMS (e.g. a non-logical symbol, a sentence, a
correspondence, the OMS itself, ...) or a named set of such resources.

linked data structured data that is published on the Web in a machine-processable way,
according to principles speci�ed in [37, 6]
Note The linked data principles (adapted from [37] and its paraphrase at [52]) are the
following:

1. Use IRIs as names for things.

2. Use HTTP IRIs so that these things can be referred to and looked up (�dereferenced�)
by people and user agents.1

3. Provide useful machine-processable (plus optionally human-readable) information about
the thing when its IRI is dereferenced, using standard formats.

4. Include links to other, related IRIs in the exposed data to improve discovery of other
related information on the Web.

Note RDF, serialized as RDF/XML [26], is the most common format for publishing linked
data. However, its usage is not mandatory.
Note Using HTTP content negotiation [21] it is possible to serve representations in dif-
ferent formats from the same URL.

4.4. OMS Annotation and Documentation

annotation additional information without a logical semantics that is attached to an ele-
ment of an OMS
Note Formally, an annotation is given as a (subject,predicate, object) triple as de�ned by
SOURCE: W3C/TR REC-rdf11-concepts:2014, Section 3.1. The subject of an annotation is
an element of an OMS. The predicate is an RDF property de�ned in an external OMS and
describes in what way the annotation object is related to the annotation subject.
Note According to note 4.4 it is possible to interpret annotations under an RDF seman-
tics. �Without a logical semantics� in this de�nition means that annotations to an OMS are
not considered sentences of that OMS.

OMS documentation set of all annotations to an OMS, plus any other documents and
explanatory comments generated during the entire OMS building process
Note Adapted from [51]

1I.e., the IRI is treated as a URL (uniform resource locator).
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4.5. Structured OMS
structured OMS OMS that results from other (basic and structured) OMS by import,
union, combination, renaming or other structuring operations

flattenable OMS OMS that can be seen, by purely syntactical means, to be logically
equivalent to a �at OMS
Note More precisely, an OMS is �attenable if and only if it is either a basic OMS or it is
an extension, union, translation, module extraction, approximation, �ltering, or reference of
named OMS involving only �attenable OMS.

elusive OMS OMS that is not �attenable

subOMS OMS whose sets of non-logical symbols and sentences are subsets of those present
in a given larger OMS

extension OMS whose sets of non-logical symbols and sentences are supersets of those
present in a given smaller OMS

extension mapping inclusion OMS mapping between two OMS where the sets of non-
logical symbols and sentences of the second OMS are supersets of those present in the �rst
OMS
Note The second OMS is said to extend the �rst, and is an extension of the �rst OMS.

consequence-theoretic conservative extension extension that does not add new
theorems (in terms of the unextended signature)
Note An extension O2 of an OMS O1 is a consequence-theoretic conservative extension,
if all properties formulated in the signature of O1 hold for O1 whenever they hold for O2.

model-theoretic conservative extension extension that does not lead to a restriction
of class of model s of an OMS
Note An extension O2 of an OMS O1 is a model-theoretic conservative extension, if all
properties formulated in the signature of O1 hold for O1 whenever they hold for O2.
Note Any model-theoretic conservative extension is also a consequence-theoretic one.

conservative extension consequence-theoretic or model-theoretic conservative exten-
sion
Note If used without quali�cation, the consequence-theoretic version is meant.

monomorphic extension extension whose newly introduced non-logical symbols are in-
terpreted in a way unique up to isomorphism
Note An extension O2 of an OMS O1 is a monomorphic extension, if each model of O1

can be expanded to a model of O2 that is unique up to isomorphism.
Note Each monomorphic extension is also a model-theoretic conservative extension but
not vice versa.
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definitional extension extension whose newly introduced non-logical symbols are inter-
preted in a unique way
Note An extension O2 of an OMS O1 is a de�nitional extension, if each model of O1 can
be uniquely expanded to a model of O2.
Note O2 being a de�nitional extension of O1 implies a bijective correspondence between
the classes of models of O2 and O1.
Note Each de�nitional extension is also a monomorphic extension but not vice versa.

weak definitional extension extension whose newly introduced non-logical symbols can
be interpreted in at most one way
Note An extension O2 of an OMS O1 is a weak de�nitional extension, if each model of
O1 can be expanded to at most one model of O2.
Note An extension is de�nitional if and only if it is both weakly de�nitional and model-
theoretically conservative.

implied extension model-theoretic conservative extension that does not introduce new
non-logical symbols
Note A conservative extension O2 of an OMS O1 is an implied extension, if and only if
the signature of O2 is the signature of O1. O2 is an implied extension of O1 if and only if the
model class of O2 is the model class of O1.
Note Each implied extension is also a de�nitional extension but not vice versa.

module subOMS that conservatively extends to conservative extension the whole OMS
Note The conservative extension can be either model-theoretic or consequence-theoretic;
without quali�cation, the consequence-theoretic version is used. 22 Note(22)

module extraction activity of obtaining from an OMS concrete modules to be used for a
particular purpose (e.g. to contain a particular sub-signature of the original OMS)
Note Cited and slightly adapted from [51]
Note The goal of module extraction is �decomposing an OMS into smaller, more man-
ageable modules with appropriate dependencies� [50]

Example Consider an OWL DL ontology about wines, from which we would like to extract
a module about white wines. That module would contain the declaration of the non-logical
symbol �white wine�, all declarations of non-logical symbols related to �white wine�, and all
sentences about all of these non-logical symbols.

approximant approximation (in the sense of a logically implied theory, possibly after suit-
able translation) of an OMS in a smaller signature or OMS language

maximum approximant best possible (in the sense of a maximum set of logical conse-
quences) approximant of an OMS in a smaller signature or OMS language
Note Technically, a maximum approximant is a uniform interpolant, see [40].

closed world assumption presumption that what is not known to be true, is false

22
Note: this is about coverage only. Should we also care about safety?
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minimization; circumscription way of implementing the closed world assumption by
restricting the models to those that are minimal
Note See [42], [38].

4.6. Mappings Between OMS
OMS mapping; linkOMS relationship between two OMS

symbol map item pair of symbols of two OMS, indicating how a symbol from the �rst
OMS is mapped by a signature morphism to a symbol of the second OMS
Note A symbol map item is given as s1 7→ s2, where s1 is a symbol from the source OMS
and s2 is a symbol from the target source of the OMS mapping.

interpretation; view; refinement OMS mapping that postulates a specialization rela-
tion between two OMS along a morphism between their signatures
Note An interpretation typically leads to proof obligations, i.e. one has to prove that
translations of axioms of the source OMS along the morphism accompanying the interpreta-
tion are theorems in the target OMS.
Note When an interpretation is given as a set of correspondences, these are given as
tuples, where the type of relationship is given by the speci�c kind of interpretation. 23 Note(23)

equivalence OMS mapping ensuring that two OMS share the same de�nable concepts
Note Two OMS are equivalent if they have a common de�nitional extension. The OMS
may be written in di�erent OMS languages.

interface signature signature mediating between an OMS and a module of that OMS in
the sense that it contains those non-logical symbols that the sentences of the module and the
sentences of the OMS have in common
Note Adapted from [20]

module relation OMS mapping stating that one OMS is a module of the other one.

import OMS mapping between two OMS such that one OMS behaves as if it were included
into the other
Note Semantically, an import of O2 into O1 is equivalent to the verbatim inclusion of O2

in place of the import declaration
Note The purpose of O2 importing O1 is to make non-logical symbols and sentences of
O1 available in O2.
Note Importing O1 into O2 turns O2 into an extension of O1.
Note An owl:import in OWL is an import.

renaming assignment of new names to some non-logical symbols of an OMS
Note A renaming results in an OMS mapping between the original and the renamed
OMS.

23
Note: I don’t understand this sentence.
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reduction OMS mapping reducing an OMS to a smaller signature

alignment �exible OMS mapping expressing a collection of semantic relations between
entities of the two OMS
Note Alignments consist of correspondences, each of which may have a con�dence value.
If all con�dence values are 1, the alignment can be given a formal, logic-based semantics.

correspondence relationship between an non-logical symbol e1 from an OMS O1 and an
non-logical symbol e2 from an OMS O2, or between an non-logical symbol e1 from O1 and a
term t2 formed from non-logical symbols from O2

Note A correspondence is given as a quadruple (e1, R,

{
e2

t2

}
, c), where R denotes the

type of relationship that is asserted to hold between the two non-logical symbols/terms, and
0 ≤ c ≤ 1 is a con�dence value. R and c may be omitted: When R is omitted, it defaults to
the equivalence relation, unless another default relation has been explicitly speci�ed; when c
is omitted, it defaults to 1.
Note A con�dence value of 1 does not imply logical equivalence (cf. [35] for a worked-out
example).
Note Not all OMS languages implement logical equivalence. For example, OWL does
not implement logical equivalence in general, but separately implements equivalence rela-
tions restricted to individuals (owl:sameAs), classes (owl:equivalentClass) and properties
(owl:equivalentProperty).

matching algorithmic procedure that generates an alignment for two given OMS
Note For both matching and alignment, see [16, 31].

union aggregation of several OMS to a new OMS, without any renaming 24 Note(24)

OMS network; distributed OMS; hyperontology graph with OMS as nodes and OMS
mappings as edges, showing how the OMS are interlinked 25 Note(25)
Note The opposite of an OMS network is an OMS, which focuses on the speci�cation of
a single logical theory.
Note An OMS network is a diagram of OMS in the sense of category theory, but di�erent
from a diagram in the sense of model-driven architecture.
Note The links between the nodes of a distributed OMS can be given using interpretations
or alignments. Imports between the nodes of a distributed OMS are automatically included
in the distributed OMS. By including an interpretation or an alignment in a distributed OMS,
the involved nodes are automatically included.
Example Consider two ontologies and an interpretation between them. In the distributed
OMS of the interpretation there are two nodes, one for each ontology, and one edge from the
source ontology to the target ontology of the interpretation.

combination aggregation of all the OMS in an OMS network, where non-logical symbol s
are shared according to the OMS mapping s in the OMS network
Example Consider an ontology involving a concept Person, and another one involving

24
Note: why is this here?

25
Note: Is “hyperontology” a synonym for “OMS network”, or rather for “heterogeneous OMS”?
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Human being, and an alignment that relates these to concepts. In the combination of the
ontologies along the alignment, there is only one concept, representing both Person and
Human being.

sharing property of OMS symbols being mapped to the same symbol when computing a
combination of an OMS network
Note Sharing is always relative to a given OMS network that relates di�erent OMS. That
is, two given OMS symbols can share with respect to one OMS network, and not share with
respect to some other OMS network.

4.7. Features of OMS Languages

OMS language translation mapping from constructs in the source OMS language to
their equivalents in the target OMS language

Note An OMS language translation shall satisfy the property that the result of a trans-
lation is a well-formed text in the target language.

OMS language graph graph of OMS languages and OMS language translations, typically
used in a heterogeneous environment
Note In an OMS language graph, some of the OMS language translations can be marked
to be default translations.

default translation specially marked OMS language translation or logic translation that
will be used whenever a translation is needed and no explicit translation is given

heterogeneous environment environment for the expression of homogeneous and het-
erogeneous OMS, comprising a logic graph, an OMS language graph and a supports relation
Note Although in principle, there can be many heterogeneous environments, for ensur-
ing interoperability, there will be a global heterogeneous environment (maintained in some
registry), with subenvironments for speci�c purposes. 26 Note(26)

sublanguage syntactically speci�ed subset of a given language, consisting of a subset of
its terminal and nonterminal symbols and grammar rules

language aspect set of language constructs of a given language, not necessarily forming
a sublanguage

logical language aspect the (unique) language aspect of an OMS language that enables
the expression of non-logical symbols and sentences in a logic

structuring language aspect the (unique) language aspect of an OMS language that
covers structured OMS as well as the relations of basic OMS and structured OMS to each
other, including, but not limited to imports, OMS mappings, conservative extensions, and
the handling of pre�xes for CURIEs

26
Note: In the semantics, there also is a binary supports relation between OMS languages and serial-
izations.
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annotation language aspect the (unique) language aspect of an OMS language that
enables the expression of comments and annotations

profile (syntactic) sublanguage of an OMS language interpreting according to a particular
logic that targets speci�c applications or reasoning methods
Example Pro�les of OWL 2 include OWL 2 EL, OWL 2 QL, OWL 2 RL, OWL 2 DL, and
OWL 2 Full.
Note Pro�les typically correspond to sublogics.
Note Pro�les can have di�erent logics, even with completely di�erent semantics, e.g.
OWL 2 DL versus OWL 2 Full.
Note The logic needs to support the language.

4.8. OMS Language Serializations

serialization speci�c syntactic encoding of a given OMS language
Note Serializations serve as standard formats for exchanging OMS between tools.
Example OWL uses the term �serialization�; the following are standard OWL serializa-
tions: OWL functional-style syntax, OWL/XML, OWLManchester syntax, plus any standard
serialization of RDF (e.g. RDF/XML, Turtle, . . . ). However, RDF/XML is the only one tools
are required to implement.
Example Common Logic uses the term �dialect�; the following are standard Common Logic
dialects: Common Logic Interchange Format (CLIF), Conceptual Graph Interchange Format
(CGIF), eXtended Common Logic Markup Language (XCL).

document result of serializing an OMS using a given serialization

standoff markup way of providing annotations to subjects in external resources, without
embedding them into the original resource (here: OMS)

4.9. Logic

logic speci�cation of valid reasoning that comprises signatures, sentences, models , and a
satisfaction relation between models and sentences
Note Most OMS languages have an underlying logic.
Example SROIQ(D) is the logic underlying OWL 2 DL.
Note See annex A for the organization of the relation between OMS languages and their
logics and serializations.

supports relation relation between OMS languages and logics expressing the logical lan-
guage aspect of the former, namely that the constructs of the former lead to a logical theory
in the latter

institution metaframework mathematically formalizing the notion of a logic
Note See clause 11 for a formal de�nition.

20



4. Terms and De�nitions

logic translation mapping of a source logic into a target logic (mapping signatures, sen-
tences and models) that keeps or encodes the logical content of OMS

logic reduction mapping of a source logic onto a (usually less expressive) target logic
(mapping signatures, sentences and models) that simply forgets those parts of the logical
structure not �tting the target logic

theoroidal logic translation translation that maps signatures of the source logic to the-
ories (i.e. signatures and sets of sentences) of the target logic.
Example The translation from OWL to multi-sorted �rst-order logic translates each OWL
built-in type to its �rst-order axiomatization as a datatype.

sublogic a logic that is a syntactic restriction of another logic, inheriting its semantics

logic graph graph of logics, logic translations and logic reductions, typically used in a
heterogeneous environment
Note In a logic graph, some of the logic translations and reductions can be marked to be
default translations. 27 Note(27)

homogeneous OMS OMS whose parts are all formulated in one and the same logic
Note Opposite of heterogeneous OMS.

heterogeneous OMS OMS whose parts are formulated in di�erent logics
Note Opposite of homogeneous OMS.
Example

28 Note(28)

logic approximation mapping of a source logic onto a (usually less expressive) target
logic that tries to approximate the OMS expressed in the source logic with means of the
expressivity of the target logic
Note A unique maximal approximation need not exist.
Note The target logic typically is a sublogic of the source logic.

4.10. Interoperability
29 Note(29)
30

Note(30)

27
Note: Hopefully it is OK to subsume the notion of logic reduction under the term “translation” here.

28
Note: See section I.1.

29
Note: TODO: possibly define some notion of “interoperability” that is tailored to this OMG Specification.
At least we need to be able to speak about overall consistency, alignments, etc.

30
Note: FYI: Definitions in earlier drafts were not quite helpful:
• OMS integration := “combination of different OMS into a coherent whole, via alignments”
•OMS interoperability := “relation among OMS (via OMS alignments) with the goal of using them jointly
in an application scenario”
AENOR commented on the latter: “The definition of this term needs some revision and more precision
in the document as for the real criteria that shall be applied to evaluate the degree of interoperability
between OMS.”
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31 Note(31)

logically interoperable property of structured OMS, which may be written in di�erent
OMS languages 32based on di�erent logics, of being usable jointly in a coherent way (via Note(32)
suitable OMS language translationsOMS language translation), such that the notions of their
overall consistency and logical entailment have a precise logical semantics
Note Within ISO 19763 and ISO 20943, metamodel interoperability is equivalent to the
existence of mapping, which are statements that the domains represented by two models
intersect and there is a need to register details of the correspondence between the structures
in the models that semantically represent this overlap. Within these standards, a model is
a representation of some aspect of a domain of interest using a normative modelling facility
and modelling constructs.

31
Note: Frank Farance cited the following from ISO/IEC 2381-1 Information Technology Vocabulary –
Part 1: Fundamental Terms:
01.01.47
interoperability
The capability to communicate, execute programs, or transfer data among various functional units in a
manner that requires the user to have little or no knowledge of the unique characteristics of those units.
01.01.40
functional unit
An entity of hardware or software, or both, capable of accomplishing a specified purpose.
... and the following from the FDIS 20944-1 Information technology – Metadata Registries Interoper-
ability and Bindings (MDR-IB)– Part 1: Framework, common vocabulary, and common provisions for
conformance
3.21.12.4
data interoperability
interoperability concerning the creation, meaning, computation, use, transfer, and exchange of data
3.21.12.5
metadata interoperability
interoperability concerning the creation, meaning, computation, use, transfer, and exchange of descrip-
tive data

32
Note: TODO: phrase this more precisely, based on the previously introduced terms
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5. Symbols
As listed below, these symbols and abbreviations are generally for the main clauses of the
OMG Speci�cation. Some annexes may introduce their own symbols and abbreviations which
will be grouped together within that annex.

CASL Common Algebraic Speci�cation Language, speci�ed by the Common Frame-
work Initiative

CGIF Conceptual Graph Interchange Format
CL Common Logic
CLIF Common Logic Interchange Format
CORBA Common Object Request Broker Architecture
CURIE Compact URI expression
CWM Common Warehouse Metamodel
DDL Distributed description logic
DOL Distributed Ontology, Modeling and Speci�cation Language
DTV Date-Time Vocabulary
EBNF Extended Backus-Naur Form
E-
connections

a modular ontology language (closely related to DDL)

F-logic frame logic, an object-oriented ontology language
IDL Interface De�nition Language
IIOP Internet Inter-ORB Protocol
IRI Internationalized Resource Identi�er
MDA Model Driven Architecture
MOF Meta-Object Facility
OCL Object Constraint Language
OWL 2 Web Ontology Language (W3C), version 2: family of knowledge representation

languages for authoring ontologies
OWL 2 DL description logic pro�le of OWL 2
OWL 2 EL a sub-Boolean pro�le of OWL 2 (used often e.g. in medical ontologies)
OWL 2 Full the language that is determined by RDF graphs being interpreted using the

OWL 2 RDF-Based Semantics [24]
OWL 2 QL pro�le of OWL 2 designed to support fast query answering over large amounts

of data
OWL 2 RL fragment of OWL 2 designed to support rule-based reasoning
OWL 2 XML XML-based serialization of the OWL 2 language
P-DL Package-based description logic
PIM Platform-independent Model
PSM Platform-speci�c Model
RDF Resource Description Framework, a graph data model
RDFS RDF Schema
RDFa a set of XML attributes for embedding RDF graphs into XML documents
RDF/XML an XML serialization of the RDF data model
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RIF Rule Interchange Format
SBVR Semantics of Business Vocabulary and Business Rules
SMOF MOF Support for Semantic Structures
UML Uni�ed Modeling Language
URI Uniform Resource Identi�er
URL Uniform Resource Locator
W3C World Wide Web Consortium
XMI XML Metadata Interchange
XML eXtensible Markup Language
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6. Additional Information

6.1. Changes to Adopted OMG Specifications
This speci�cation does not require or request any change to any other OMG speci�cation.

6.2. How to Read this Specification
The initial eight chapters of this speci�cation are informative providing a high-level summary
of usage scenarios and goals (Chapter 7) and an overview over the design of DOL (Chapter
8).

Chapter 9 de�nes the abstract syntax of DOL (normative) in Extended Backus�Naur Form
(EBNF).

Chapter 10 provides a human friendly text serialization of the abstract syntax of DOL (nor-
mative).

Chapter 11 de�nes the model-theoretic semantics of DOL (normative).

Annex A speci�es an RDF vocabulary for describing OMS languages that conform with DOL
(normative).

Annex B discusses the conformance of OWL2 with DOL (normative). 33 Note(33)

Annex C discusses the conformance of OWL2 with DOL (normative). 34 Note(34)

Annex D discusses the conformance of RDF and RDFS with DOL (normative). The confor-
mance is established by de�ning institutions for RDF and RDFS.

Annex E discusses the conformance of UML class diagrams with DOL (normative).35 Note(35)

Annex F discusses the conformance of Casl with DOL (normative).36 Note(36)

Annex G provides a core graph of logics and translations, covering those OMS languages whose
conformance with DOL is established in the preceding, normative annexes (normative).

Annex H extends the graph presented in Annex G by a list of OMS language whose confor-
mance with DOL will be established by a registry. (informative).

Annex I provides of DOL texts, which provide examples for all DOL constructs, which are
speci�ed in the abstract syntax. (informative).

33
Note: Elaborate after the annex has been finished.

34
Note: Elaborate after the annex has been finished.

35
Note: Elaborate after the annex has been finished.

36
Note: Review this after the annex has been finished.
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6. Additional Information

Annex J sketches scenarios that outline how DOL is intended to be applied. For each scenario,
we list its status of implementation, the DOL features it makes use of, and provide a brief
description. (informative).

Annex K contains the abstract syntax speci�ed as an SMOF compliant meta model. (infor-
mative).

The bibliography contains L.3 references to the literature that is cited in this document.
(informative).
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7. Goals and Usage Scenarios
Often, engineering tasks require the use of several di�erent OMS, which represent knowledge
about a given domain or specify a given system from di�erent perspectives or for di�erent
purposes. (E.g., a software engineer will typically use di�erent OMS to model di�erent aspects
of a software system, including its behavior, its components, and its interactions with other
systems.) Further, the OMS are often represented in di�erent OMS languages (e.g., UML
class diagrams, OWL, or Common Logic), which may di�er in style, expressivity, and di�erent
computational properties.
The use of di�erent OMS within the same context leads to several challenges in the de-

sign and deployment of OMS, which have been addressed by current research in ontological
engineering, formal software speci�cation and formal modeling:

� How can we support sharability and reusability of OMS within the same domain?

� How can we merge OMS in di�erent domains, particularly in the cases in which the
OMS are axiomatized in di�erent logical languages?

� What notions of modularity play a role when only part of an OMS is being shared or
reused?

� What are the relationships between versions of an OMS axiomatized in di�erent logical
languages?

To illustrate these challenges, in this clause we present a set of usage scenarios that involve
the use of more than one OMS. These scenarios are in the areas of ontology design, formal
speci�cation, and model-driven development. In spite of their many di�erences, they all
highlight one common theme: the use of multiple OMS leads to interoperability challenges.
The purpose of DOL is to provide a standardized representation language, which allows

to represent structured OMS and the relations between OMS as part of OMS networks in a
semantically well-de�ned way. Thus, tools that implement DOL are able to integrate di�erent
OMS into a coherent whole. This enables users of DOL to overcome the di�erent kind of
interoperability issues that illustrated by the usage scenarios in this clause.

7.1. Use case Onto-1: Interoperability between OWL
and FOL ontologies

In order to achieve interoperability, during ontology development it is often necessary to
describe concepts in a language more expressive than OWL. Therefore, it is common prac-
tice to informally annotate OWL ontologies with FOL axioms (e.g., Keet's mereotopological
ontology [Part-Whole], Dolce Lite [Dolce-lite], BFO-OWL). OWL is used because of better
tool support, FOL because of greater expressiveness. However, relegating FOL axioms to
informal annotations means that these are not available for machine processing. Another ex-
ample of this problem is the following: For formally representing concept schemes (including
taxonomies, thesauri and classi�cation schemes) and provenance information there are the
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two W3C standards SKOS (Simple Knowledge Organization System) and PROV, as well as
37ISO and other domain-speci�c standards for metadata representation. The semantics for Note(37)
the SKOS and PROV languages are largely speci�ed as OWL ontologies; however, as OWL
cannot capture the full semantics, the rest is speci�ed using some informal �rst-order rules. In
other words, valid instance models that use SKOS or PROV may be required to satisfy both
OWL and FOL axioms. When solving reasoning tasks over either SKOS or PROV ontologies,
OWL reasoners are not able to consider the FOL axioms. Hence, the information contained
in these axioms is lost.
DOL allows the user to replace such informal annotations by formal axioms in a suitable

ontology language. The relation between the OWL ontology and the FOL axioms is that of
a heterogeneous import. In the result, both the OWL and the FOL axioms are amenable to,
e.g., automated consistency checks and theorem proving. Hence, all available information can
be used in the reasoning process. For example, the ontology below extends the OWL de�nition
of isProperPartOf as an asymmetric relation with a �rst-order axiom (in Common Logic)
asserting that the relation is also transivitive.

logic CommonLogic
ontology Parthood =
ObjectProperty: isProperPartOf

Characteristics: Asymmetric
SubPropertyOf: isPartOf

with translation trans:SROIQtoCL
then

(if (and (isProperPartOf x y) (isProperPartOf y z))
(isProperPartOf x z))

OWL can express transitivity, but not together with asymmetry.

7.2. Use Case Onto-2: Ontology integration by means
of a foundational ontology

One major use case for ontologies in industry is to achieve interoperability and data integra-
tion. However, if ontologies are developed independently and used within the same domain,
the di�erences between the ontologies may actually impede interoperability. One strategy to
avoid this problem is the use of a shared foundational ontology (e.g., DOLCE or BFO), which
can be used to harmonize di�erent domain ontologies. One challenge for this approach is that
foundational ontologies typically rely on expressive ontology languages (e.g., Common Logic),
while domain ontologies may be represented in languages that are optimized for performance
(e.g., OWL EL). For this reason, currently the role of the foundational ontology is mainly
to provide a conceptual framework that may be reused by the domain ontologies; further,
watered-down versions of the foundational ontologies in OWL (like DOLCE-lite or the OWL
version of BFO) are used as basis for the development of domain ontologies, be this as is, in
an even less expressive version (e.g., a DOLCE-lite in OWL 2 EL), or only a relevant subset
thereof (e.g., only the branch of endurants). A sample orchestration of interactions between
the foundational and domain ontologies in various languages is depicted in Figure 8.1 below.

37
Note: CL: Did we mean something like “ISO 12345” here, i.e. some specific ISO standard that we
reference by number?
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DOL provides the framework for integrating di�erent domain ontologies, aligning these to
foundational ontologies [Alignment1-2] and combining the aligned ontologies into a coherent
integrated ontology � even across di�erent ontology languages. Thus, DOL enables ontology
developers to utilize the complete, and most expressive, foundational ontologies for ontology
integration and validation purposes.
The foundational ontology (FO) repository Repository of Ontologies for MULtiple USes

(ROMULUS)1 contains alignments between a number of foundational ontologies, expressing
semantic relations between the aligned entities. We select three such ontologies, containing
spatial and temporal concepts: DOLCE2, GFO3 and BFO4, and present alignments between
them using DOL syntax:

%prefix(
gfo: <http://www.onto-med.de/ontologies/>
dolce: <http://www.loa-cnr.it/ontologies/>
bfo: <http://www.ifomis.org/bfo/>

)%
logic OWL

alignment DolceLite2BFO :
dolce:DOLCE-Lite.owl
to
bfo:1.1 =
endurant = IndependentContinuant,
physical-endurant = MaterialEntity,
physical-object = Object, perdurant = Occurrent,
process = Process, quality = Quality,
spatio-temporal-region = SpatiotemporalRegion,
temporal-region = TemporalRegion, space-region = SpatialRegion

alignment DolceLite2GFO :
dolce:DOLCE-Lite.owl to gfo:gfo.owl =

particular = Individual, endurant = Presential,
physical-object = Material_object, amount-of-matter = Amount_of_substrate,
perdurant = Occurrent, quality = Property,
time-interval = Chronoid, generic-dependent < necessary_for,
part < abstract_has_part, part-of < abstract_part_of,
proper-part < has_proper_part, proper-part-of < proper_part_of,
generic-location < occupies, generic-location-of < occupied_by

alignment BFO2GFO :
bfo:1.1 to gfo:gfo.owl =

Entity = Entity, Object = Material_object,
ObjectBoundary = Material_boundary, Role < Role ,
Occurrent = Occurrent, Process = Process, Quality = Property
SpatialRegion = Spatial_region, TemporalRegion = Temporal_region

We can then combine the ontologies while taking into account the semantic dependencies
given by the alignments using DOL combinations:

ontology Space =

1See http://www.thezfiles.co.za/ROMULUS/home.html
2See http://www.loa.istc.cnr.it/DOLCE.html
3See http://www.onto-med.de/ontologies/gfo/
4See http://www.ifomis.org/bfo/
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combine BFO2GFO, DolceLite2GFO, DolceLite2BFO

7.3. Use Case Onto-3: Module extraction from large
ontologies

Especially in the biomedical domain, ontologies tend to become very large (e.g., SNOMED
CT, FMA) with over 100000 concepts and relationships. Yet, none of these ontologies covers
all aspects of a domain, and frequently provide coverage at various levels of speci�city, with
excessive detail in some areas that may not be required for all usage scenarios. Often, for a
given knowledge representation problem in industry, only relevant knowledge from two such
large reference ontologies needs to be integrated, so a comprehensive integration would be both
unfeasible and unwieldy. Hence, parts (modules) of these ontologies are obtained by selecting
the concepts and relationships (roles) relevant for the intended application. An integrated
version will then be based on these excerpts from the original ontologies (i.e., modules). For
example, the Juvenile Rheumatoid Arthritis ontology JRAO has been created using modules
from the NCI thesaurus and GALEN medical ontology. (See 38Figure 7.1) DOL supports the Note(38)
description of such subsets (modules) of ontologies, as well as their alignment and integration.

Figure 7.1.: JRAO � Example for Module Extraction

38
Note: CL: can we please have a vector graphic here?
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7.4. Use case Onto-4: Interoperability between
closed-world data and open-world metadata

Data collection has become easier and much more widespread over the years. This data
has to be assigned a meaning somehow, which occurs traditionally in the form of metadata
annotations. For instance, consider geographical datasets derived from satellite data and raw
sensor readings. Current implementations in, e.g., ecological economics[5] require manual
annotation of datasets with the information relevant for their processes. While there have
been attempts to standardize such information[12], metadata for datasets of simulation results
are more di�cult to standardize. Moreover, it is resource-consuming to link the data to the
metadata, to ensure the metadata itself is of good quality and consistent, and to actually
exploit the metadata when querying the data for data analysis.
The data is usually represented in a database or RDF triple store, which work with a

closed world assumption on the dataset, and are not expressive enough to incorporate the
metadata `background knowledge', such as the conditions for validity of the physical laws in
the model of the object of observation. These metadata require a more expressive language,
such as OWL or Common Logic, which operate under an open-world semantics. However,
it is unfeasible to translate the whole large dataset into OWL or �rst-order logic. To `meet
in the middle', it is possible to declare bridge rules (i.e., a mapping layer) that can link the
metadata to the data. This approach can be used for intelligent data analysis that combines
the data and metadata through querying the system. It enables the analysis of the data
on the conceptual layer, instead of users having to learn the SQL/SPARQL query languages
and how the data is stored. There are various tools and theories to realize this, which is
collectively called Ontology-Based Data Access/Management, see also [OBDA].
The languages for representing the metadata or ontology, for representing the bridge rules or

mapping assertions, and for representing the data are di�erent yet they need to be orchestrated
and handled smoothly in the system, be this for data analytics for large enterprises, for
formulating policies, or in silico biology in the sciences.
DOL provides the framework for expressing such bridge rules in a systematic way, main-

taining these, and building tools for them.

7.5. Use Case Onto-5: Verification of rules translating
Dublin Core into PROV

The Dublin Core Metadata terms, which have been formalized as an RDF Schema vocabu-
lary, developed initially by the digital library community, are less comprehensive but more
widely used than PROV (cf. Use Case Onto-1). The rules for translating Dublin Core to
the OWL subset of PROV (and, with restrictions, vice versa) are not known to yield valid
instances of the PROV data model, i.e. they are not known to yield OWL ontologies consis-
tent with respect to the OWL axioms that capture part of the PROV data model. This may
disrupt systems that would like to reason about the provenance of an entity, and thus the
assessment of the entity's quality, reliability or trustworthiness. The Dublin Core to PROV
ontology translation5 is expressed partly by a symbol mapping and partly by FOL rules.
These FOL rules are implemented by CONSTRUCT patterns in the SPARQL RDF query

5http://www.w3.org/TR/2013/NOTE-prov-dc-20130430/
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language.6 SPARQL has a formal speci�cation of the evaluation semantics of its algebraic
expressions, which is di�erent from the model-theoretic semantics of the OWL and RDFS
languages; nevertheless SPARQL CONSTRUCT is a popular and immediately executable
syntax for expressing translation rules between ontologies in RDF-based languages in a sub-
set of FOL. DOL not only supports the reuse of the existing Dublin Core RDFS and PROV
OWL ontologies as modules of a distributed ontology (= OMS network), but it is also able
to support the description of the FOL translation rules in a su�ciently expressive ontology
language, e.g. Common Logic, and thus enable formal veri�cation of the translation from
Dublin Core to PROV.

7.6. Use case Spec-1: Specification Refinements
Especially in safety-critical areas such as medical systems, the automotive industry, avionics
and the aerospace industry, but also for microprocessor design, often a formal software and
hardware development process is used in order to ensure the correct functioning of systems.
Typically, a requirement speci�cation is re�ned into a design speci�cation and then an im-
plementation, often involving several intermediate steps (see, e.g. the V-model [V-model],
although this does not require formal speci�cation). There are numerous speci�cation for-
malisms in use, including the OMG's SysML language; moreover, often during development,
the formalism needs to be changed (e.g. from a speci�cation to a programming language,
or from a temporal logic to a state machine). For each of these formalisms, notions of re-
�nement have been de�ned and implemented. However, the lack of a standardized, logically
sound language and methodology for such re�nement hinders interoperability among di�erent
development e�orts and the reuse of re�nements. DOL provides the capability to represent
re�nement that is equally applicable to all DOL-conforming logical languages, and that covers
at least the most relevant of the industrial use cases of speci�cation re�nement.
The speci�cation below illustrates DOL re�nements by expressing that natural numbers

with addition form a monoid, and that natural numbers can be e�ciently represented for
implementation as lists of binary digits, together with several equivalent ways of composing
these re�nements.

spec Monoid =
sort Elem
ops 0 : Elem;

__+__ : Elem * Elem -> Elem, assoc, unit 0
end

spec NatWithSuc =
free type Nat ::= 0 | suc(Nat)
op __+__ : Nat * Nat -> Nat, unit 0
forall x , y : Nat . x + suc(y) = suc(x + y)
op 1:Nat = suc(0)
end

spec Nat =
NatWithSuc hide suc

end

6E.g., http://www.w3.org/TR/2013/NOTE-prov-dc-20130430/#dct-creator
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refinement R1 =
Monoid refined via Elem |-> Nat to Nat
end

spec NatBin =
generated type Bin ::= 0 | 1 | __0(Bin) | __1(Bin)

ops __+__ , __++__ : Bin * Bin -> Bin
forall x, y : Bin
. 0 0 = 0 . 0 1 = 1
. not (0 = 1) . x 0 = y 0 => x = y . not (x 0 = y 1) . x 1 = y 1 => x = y
. 0 + 0 = 0 . 0 ++ 0 = 1
. x 0 + y 0 = (x + y) 0 . x 0 ++ y 0 = (x + y) 1
. x 0 + y 1 = (x + y) 1 . x 0 ++ y 1 = (x ++ y) 0
. x 1 + y 0 = (x + y) 1 . x 1 ++ y 0 = (x ++ y) 0
. x 1 + y 1 = (x ++ y) 0 . x 1 ++ y 1 = (x ++ y) 1
end

refinement R2 =
Nat refined via Nat |-> Bin to NatBin
end

refinement R3 =
Monoid refined via Elem |-> Nat to
Nat refined via Nat |-> Bin to NatBin
end

refinement R3’ =
Monoid refined via Elem |-> Nat to R2
end

refinement R3’’ =
Monoid refined via Elem |-> Nat to Nat then R2
end

refinement R3’’’ = R1 then R2

7.7. Use case Spec-2: Modularity of Specifications
In the context of use case Spec-1, often speci�cations become so large that it is necessary
to structure them in a modular way, both for human readability, maintainability, and for
more e�cient tool support. The lack of a standard for such modular structuring hinders
interoperability among di�erent development e�orts and the reuse of speci�cations. DOL
provides a notion of structured modular speci�cation that is equally applicable to all DOL-
conforming logical languages.

spec Monoid =
sort Elem
ops e: Elem;

__ * __: Elem * Elem -> Elem, assoc, unit e
end

spec CommutativeMonoid =
Monoid
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then
op __ * __: Elem * Elem -> Elem, comm

end

spec Group =
Monoid

then
forall x: Elem
. exists x’: Elem . x’ * x = e %(inv_Group)%

end

spec AbelianGroup =
Group

and
CommutativeMonoid

end

spec Ring =
AbelianGroup with sort Elem,

ops __ * __ |-> __ + __,
e |-> 0

and
Monoid with ops e, __*__

then
forall x,y,z:Elem
. (x + y) * z = (x * z) + (y * z) %(distr1_Ring)%
. z * ( x + y ) = (z * x) + (z * y) %(distr2_Ring)%

end

7.8. Use case Model-1: Coherent semantics for
multi-language models

39 Note(39)
Often a single problem area within a given domain must be described using several for-

malisms, due to user community requirements, expressiveness, tool support and usage, and so
forth. A challenge is that typically the di�erent formalizations are written by di�erent people
using di�erent logics, and, thus, their overall consistency is hard to maintain. The need for
the use of multiple ontology languages, even within the OMG community, is also re�ected
by the OMG Ontology De�nition Metamodel (ODM), which provides a number of syntactic
transformations between such languages. One example is the OMG Date-Time Vocabulary
(DTV). DTV has been formulated in di�erent languages, each of which addresses di�erent
audiences:

� SBVR: business users

� UML (class diagrams and OCL): software implementers

� OWL: ontology developers and users

� Common Logic: (foundational) ontology developers and users

With DOL, one can, e.g.,

39
Note: Isn’t this one about ontologies,too?
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� formally relate the di�erent formalizations used for DTV, relate the di�erent formal-
izations using translations,

� check consistency across the di�erent formalizations (using suitable tools),

� extract sub-modules covering speci�c aspects, and

� specify the OWL version to be an approximation of the Common Logic version (using
a heterogeneous interpretation of OMS).

Note that the last point does not specify what information is lost in the approximation.
Indeed, DOL provides the means to specify requirements on the approximation, e.g., that it
maximally preserves the information.

7.9. Use case Model-2: Consistency among UML
diagrams of different types

A typical UML model involves diagrams of di�erent types. Such UML models may have intrin-
sic errors because diagrams of di�erent types may specify con�icting requirements. Typical
questions that arise in this context are, e.g.,

� whether the multiplicities in a class diagram are consistent with each other

� wether the attributes and operations in a state machine are available in a class diagram

� whether the sequential composition of actions in an interaction diagram is justi�ed by
an accompanying OCL speci�cation,

� whether cooperating state machines comply with pre-/post-conditions and invariants

� if the behavior prescribed in an interaction diagram is realizable by several state ma-
chines cooperating according to a composite structure diagram.

Such questions are currently hard to answer in a systematic manner. One method to an-
swer these questions and �nd such errors is a check for semantic consistency. Under some
restrictions, the proof of semantic consistency can be (at least partially) performed using
model-checking tools like Hugo/RT [34]. Once a formal semantics for the di�erent diagram
types has been chosen (see, e.g. [33]), it is possible to use DOL to specify in which sense the
diagrams need to be consistent, and check this by suitable tools.

7.10. Use case Model-3: Refinements between UML
diagrams of different types, and their reuse

A problem is a lack of reusability of re�nements: Consider a controller for an elevator, which
is speci�ed with a UML protocol state machine, enriched with UML sequence diagrams and
OCL constraints. Assume further that this model is not directly implemented, but �rst re�ned
to a UML behavior state machine (which then can be automatically or semi-automatically
transformed into some implementation using standard UML tools). However, there is no
standardized language to express, document and maintain the re�nement relation itself (UML
only allows very simple re�nements, namely between state machines). This hinders both the
reuse of such re�nements in di�erent contexts, as well as the interoperability of tools proving
such re�nements to be correct. DOL addresses these problems by providing a standardized
notation with formal semantics for such re�nements. Re�nements expressed in this language
could, e.g., be parameterized and reused in di�erent contexts.
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7.11. Conclusion
In the next sections, we discuss the metalanguage DOL, its features that enable the support of
a variety of formalisms, with syntax, well-de�ned semantics and model theory. DOL distills
best practices of modularity and metarelations (such as re�nement and alignment) across
the three areas of ontology design, formal speci�cation, and model-driven development. It
provides the ability to specify the basis for formal interoperability even among heterogeneous
OMS and OMS networks. DOL enables the solutions of the problems described in the use
cases above. It also enables the development of OMS libraries, tools and work�ows that allow
a better exchange and reuse of OMS. Eventually, this will also lead to better, easier developed
and maintained systems based on these OMS.
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8. Design Overview
This clause is informative. Its purpose is to brie�y describe the overall guiding principles and
constraints of DOL's syntax and semantics.
We give an overview of the most important and innovative language constructs of DOL.

Details can be found in clause 9.

8.1. DOL in a nutshell
As the usage scenarios in clause 7 illustrate, the use of multiple OMS may lead to lack of
interoperability. The goal of DOL is to enable users to overcome these interoperability issues
by providing a language for representing structured OMS and the relations between OMS as
part of an OMS network in a semantically well-de�ned way. One particular challenge that
needs to be addressed is that OMS are written in a wide variety of OMS languages, which
di�er in style, expressivity and logical properties. We face this diversity not by proposing
a �universal� language that is intended to subsume all the others, but by accepting this
pluralism in OMS languages and by formulating means (on a sound and formal semantic
basis) to compare and integrate OMS written in di�erent formalisms. Thus, DOL is not
`yet-another-modeling language', but a meta-language that is used on top of existing OMS
languages.
The major functions of DOL are the following:

� DOL allows the use of OMS in other OMS languages (e.g., UML class diagrams, Casl,
OWL, Common Logic) without requiring any changes. These are called basic OMS.

� DOL provides for de�ning new, more complex OMS based on existing OMS. These OMS
are called structured OMS. DOL provides a number of operations for this purpose; e.g.,
it is possible to de�ne a structured OMS C as the union of an OWL ontology A and a
Common Logic ontology B.

� DOL provides for de�ning connections between two OMS by using OMS mappings.
DOL provides a variety of mappings; e.g., one can align terminology between di�erent
OMS or specify that some OMS is an extension of another. A set of OMS and OMS
mappings may form together an OMS network.

� Basic OMS inherit their semantics from the underlying OMS languages. Structured
OMS, OMS mappings, and OMS networks have a declarative model-theoretic seman-
tics, which is de�ned in clause 11.

The syntax of DOL roughly follows these functions; basic OMS, structured OMS, OMS
mappings, and OMS networks are the most important syntactic categories of DOL. They
(together with queries and importation) form the items in a DOL library.

8.2. Features of DOL
DOL is a language enabling OMS interoperability. DOL is
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free DOL is freely available for unrestricted use.

generally applicable DOL is neither restricted to OMS in a speci�c domain, nor to founda-
tional OMS, nor to OMS represented in a speci�c OMS language, nor to OMS stored
in any speci�c repositories.

open DOL supports mapping, integrating, and annotating OMS across arbitrary internet
locations. It makes use of existing open standards wherever suitable. The criteria for
extending DOL (see next item) are transparent and explicit.

extensible DOL provides a framework into which any existing, and, desirably, any future
OMS language can be plugged.

DOL is applicable to any OMS language that has a formal, logic-based semantics or a se-
mantics de�ned by translation to another OMS language with such a formal semantics. The
annotation framework of DOL is additionally applicable to the non-logical constructs of such
languages. This OMG Speci�cation speci�es formal criteria for establishing the conformance
of an OMS language with DOL. The annex establishes the conformance of a number of rel-
evant OMS languages with DOL; a registry shall o�er the possibility to add further (also
non-standardized) languages.

DOL provides syntactic constructs for structuring OMS regardless of the logic their sen-
tences are formalized in. Since DOL is a meta-language, it inherits the logical language
aspects of conforming OMS languages. It is possible to literally include sentences expressed
in such OMS languages in a DOL OMS.

DOL provides an initial vocabulary for expressing relations in correspondences (as part of
alignments between OMS). Additionally, it provides a means of reusing relation types de�ned
externally of this OMG Speci�cation. DOL does not provide an annotation vocabulary, i.e.
it neither provides annotation properties nor datatypes to be used with literal annotation
objects.

8.3. OMS languages
OMS languages are declarative languages for making ontological distinctions formally precise,
for modeling a domain in an unambiguous way, or for expressing algebraic speci�cations of
software. OMS languages are distinguished by the following features:

Logic Most commonly, OMS languages are based on a description logic or some other subset
of �rst-order logic, but in some cases, higher-order, modal, paraconsistent and other
logics are used.

Modularity A means of structuring an OMS into reusable parts, reusing parts of other OMS,
mapping imported symbols to those in the importing OMS, and asserting additional
properties about imported symbols.

Annotation A means of attaching human-readable descriptions to OMS symbols, addressing
knowledge engineers and service developers, but also end users of OMS-based services.

Whereas the �rst feature determines the expressivity of the language and the possibilities for
automated reasoning (decidability, tractability, etc.), the latter two facilitate OMS engineering
as well as the engineering of OMS-based software.
Acknowledging the wide tool support that conforming established languages such as OWL,

Common Logic, MOF, or Casl 40 enjoy, existing OMS in these languages remain as they Note(40)

40
Note: review language list when annexes are finished
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are within the DOL framework. DOL enhances their modularity and annotation facilities
to a superset of the modularity and annotation facilities they provide themselves. DOL's
modularity and annotation constructs can either be embedded into existing OMS as non-
disruptive annotations, or they can be provided as stando� markup, pointing to the OMS
they talk about; DOL speci�es a syntax and semantics for both variants. DOL's modularity
constructs are semantically well-founded within a library of formal relationships between the
logics underlying the di�erent supported OMS languages.41 Note(41)

8.4. Semantic foundations of DOL
A large variety of OMS languages in use can be captured at an abstract level using the concept
of institutions [17]. This allows the development of results independently of the particularities
of a logical system and to use the notions of institution and logical language interchangeably.
The main idea is to collect the non-logical symbols of the language in signatures and to
assign to each signature the set of sentences that can be formed with its symbols. For each
signature, we provide means for extracting the symbols it consists of, together with their
kind. Institutions also provide a model theory, which introduces semantics for the language
and gives a satisfaction relation between the models and the sentences of a signature.
It is also possible to complement an institution with a proof theory, introducing a deriv-

ability relation between sentences, formalized as an entailment system [43]. In particular,
this can be done for all logics that have so far been in use in DOL.
Since institutions allow the di�erences between OMS languages to be elided to common

abstractions, the semantics of basic OMS is presented in a uniform way. The semantics of
structured OMS, OMS mappings, OMS networks, and other DOL expressions is de�ned using
model-theoretic constructions on top of institutions.

8.5. DOL enables expression of logically
heterogeneous OMS and literal reuse of existing
OMS.

DOL is a mechanism for expressing logically heterogeneous OMS. It can be used to combine
sentences and structured OMS expressed in di�erent conforming OMS languages and logics
into single documents or modules. With DOL, sentences or structured OMS of previously
existing OMS in conforming languages can be reused by literally including them into a DOL
OMS. A minimum of wrapping constructs and other annotations (e.g., for identifying the
language of a sentence) are provided. 42 See the abstract syntax category OMS in clause 9. Note(42)
A heterogeneous OMS can import several OMS expressed in di�erent conforming logics, for

which suitable translations have been de�ned in the logic graph provided in annex G or in an
extension to it that has been provided when establishing the conformance of some other logic
with DOL. Determining the semantics of the heterogeneous OMS requires a translation into
a common target language to be applied (cf. clause 11). This translation is determined via a
lookup in the transitive closure of the logic graph. Depending on the reasoners available in

41
Note: Till, is this standoff markup remark up to date?

42
Note: TODO: Figure out what this feedback item from Michael Grüninger (?) means: say that there
should be a syntax for relationships btw. OMS as well as a syntax for heterogeneous OMS. (If you write
down an OMS, it might involve constructs that only exist in OWL)
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the given application setting, it can, however, be necessary to employ a di�erent translation.
Authors can express which one to employ. In a multi-step translation, it is possible to
implicitly apply as many default translations as possible, and to concentrate on making
explicit only those translations that deviate from the default.

8.6. DOL includes provisions for expressing
mappings between OMS.

DOL provides a syntax for expressing mappings between OMS. One use case illustrating both
is sketched in Figure 8.1. OMS mappings supported by DOL include:

� imports (particularly including imports that lead to conservative extensions), see the
abstract syntax categories OMSRef and ExtensionOMS in clause 9.

� interpretations (both between OMS and OMS networks), see the abstract syntax cat-
egory IntprDefn in clause 9.

� alignments between OMS, see the abstract syntax category AlignDefn in clause 9.

� mappings between OMS and their modules, see the abstract syntax category ModuleRelDefn
in clause 9.

DOL uses symbol maps to express signature translations in such OMS mappings; see the
abstract syntax category SymbolMapItems in clause 9.
DOL need not be able to fully represent logical translations but is capable of referring to

them.
43 Note(43)
DOL can also be used to combine or merge OMS along such OMS mappings, see the rule

for combination for the abstract syntax category OMS in clause 9.
44 Note(44)

8.7. DOL provides a mechanism for rich annotation
and documentation of OMS.

DOL provides a mechanism for identifying anything of relevance in OMS by assigning an IRI
to it. With RDF there is a standard mechanism for annotating things identi�ed by IRIs.
Thus, DOL supports annotations in the full generality speci�ed in clause 4.4. The DOL
serializations further support the �ne-grained embedding of annotations into OMS.
The DOL serializations also supports the annotation of existing OMS via non-intrusive

stando� markup, which points to the annotation subjects from external documentation �les
or from special embedded comments, extending the comment syntax of the respective OMS
language.

43
Note: Q-AUT: We had this comment here; what does it mean? “DOL only maps symbols to expres-
sions”

44
Note: TODO: ask Michael Grüninger for his mereology example in CL
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Figure 8.1.: Mapping between two OMS formulated in di�erent OMS languages
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9.1. Abstract syntax categories
DOL provides abstract syntax categories for

� OMS (which can be basic OMS in some OMS language, or unions, translations, mini-
mizations, combinations, approximations of OMS, among others)

� OMS mappings

� OMS networks

� queries

� libraries (items in libraries are: de�nitions of OMS, OMS mappings, OMS networks and
queries, as well as quali�cations choosing the logic, OMS language and/or serialization)

� identi�ers

� annotations

Additionally, the categories of the abstract syntaxes of any conforming OMS languages (cf.
clause 2.1) are also DOL abstract syntax categories.
The following subclauses, one per abstract syntax category, specify the abstract syntax of

DOL in EBNF. Note that we deviate from the EBNF speci�cation in ISO/IEC 14977:1996
in favor of a more modern and concise EBNF syntax.1

9.2. Libraries
A library (Library) consists of a collection of (named) OMS and mappings between these.
More speci�cally, a library consists of a name, followed by a list of LibraryItems. A
LibraryItem is either a de�nition of an OMS (OMSDefn), a mapping between OMS (MappingDefn),
a de�nition of an OMS network (NetworkDefn), a de�nition related to queries (QueryRelatedDefn)
or a Qualification selecting a speci�c OMS language, logic and/or syntax that is used to
interpret the subsequent LibraryItems. Alternatively, a library can also be the verbatim in-
clusion of an OMS written in an OMS language that conforms with DOL (OMSInConformingLanguage;
cf. 2.1).

Library ::= [PrefixMap] LibraryDefn
| OMSInConformingLanguage

LibraryDefn ::= library LibraryName Qualification LibraryItem*
OMSInConformingLanguage ::= <language specific>
LibraryItem ::= LibImport

1More precisely, ISO/IEC 14977:1996 requires commas between the (non-)terminals of a right-hand
side, which we omit for the sake of better readability. Also, we replace the separator = between
left and right hand-side of a rule with ::=, and use the notation N+ for one or more repetitions of
N.
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| OMSDefn
| NetworkDefn
| MappingDefn
| QueryRelatedDefn
| Qualification

LibImport ::= lib-import LibraryName
Qualification ::= LanguageQual | LogicQual | SyntaxQual
LanguageQual ::= lang-select LanguageRef
LogicQual ::= logic-select LogicRef
SyntaxQual ::= syntax-select SyntaxRef
LibraryName ::= IRI

45 Note(45)
At the beginning of a library, one can declare a PrefixMap for abbreviating long IRIs; see

clause 9.7 for details.

9.3. OMS networks
Inside a library, one can de�ne OMS networks (NetworkDefn). A NetworkDefn names
an OMS network consisting of OMS and OMS mappings. OMS networks may build on
previously-de�ned OMS networks, and they can be used in combinations.

NetworkDefn ::= network-defn NetworkName [ConsStrength] Network
NetworkName ::= IRI
Network ::= network NetworkElements ExcludeExtensions
NetworkElements ::= network-elements NetworkElement*
NetworkElement ::= network-element [Id] OMSOrMappingorNetworkRef
ExcludeExtensions ::= exclude-imports OMSOrMappingorNetworkRef*
OMSOrMappingorNetworkRef ::= IRI

An OMS network by default also includes all inclusions (generated by ExtensionOMS)
between the involved OMS�unless these are explicitly excluded.

9.4. OMS
An OMS (OMS) can be one of the following:

� a basic OMS BasicOMS written inline, in a conforming serialization of a conforming
OMS language (which is de�ned outside this standard)2,

45
Note: FYI: Things changed from HetCASL:
• logic-select now mandatory (no default logic) and tree-scoped MC: what does this mean? To make
Hets-lib conform with this, we should have .het files equivalent to .dol files with logic selected to be
CASL
• download-items (encourage linked data best practices instead)
• item-name-map (to be replaced by namespaces??)
• lib-version (to be replaced by metadata annotations, e.g. OMV)
• indirect-mapping (will always use full IRIs, and abbreviate them by syntactic namespaces)

2In this place, any OMS in a conforming serialization of a conforming OMS language is permitted.
However, DOL's module sublanguage should be given preference over the module sublanguage of
the respective conforming OMS language; e.g. DOL's extension construct should be preferred over
OWL's import construct.
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� a translation of an OMS into a di�erent signature or OMS language,

� a reduction of an OMS to a smaller signature and/or less expressive logic (that is, some
non-logical symbols are hidden, but the semantic e�ect of sentences involving these is
kept),

� a module extracted from an OMS, using a restriction signature,

� an approximation of an OMS, in a subsignature or sublogic, with the e�ect that sen-
tences not expressible in the subsignature resp. sublogic are replaced with a suitable
approximation,

� a �ltering of an OMS, with the e�ect that some signature symbols and axioms are
removed from the OMS,

� a union of several OMS,

� an extension of an OMS with a basic or a minimizable OMS, optionally named and/or
marked as conservative, monomorphic, de�nitional or implied,

� a reference to an OMS existing on the Web,

� an OMS quali�ed with the OMS language that is used to express it,

� a combination of OMS network (technically, this is a colimit, see [53]),

� a minimization of an OMS, forcing the subsequently declared non-logical symbols to
be interpreted in a minimal way, while the non-logical symbols declared so far are
�xed (alternatively, the non-logical symbols to be minimized and to be varied can be
explicitly declared). Variants are maximization, freeness (minimizing also data sets and
equalities on these), and cofreeness (maximizing also data sets and equalities on these),

� the application of a substitution to a sentence. 46 Note(46)

BasicOMS ::= OMSInConformingLanguage
MinimizableOMS ::= BasicOMS | oms-ref OMSRef [ImportName]
ExtendingOMS ::= MinimizableOMS | minimize MinimizableOMS
OMS ::= ExtendingOMS

| minimize-symbols OMS Minimization
| translation OMS Translation
| reduction OMS Reduction
| module-extract OMS Extraction
| approximation OMS Approximation
| filtering OMS Filtering
| union OMS [ConsStrength] OMS
| extension OMS ExtensionOMS
| qual-oms Qualification* OMS
| bridge OMS Translation* ExtendingOMS
| combination Network
| application OMS SubstName

Minimization ::= MinType CircMin CircVars
MinType ::= minimize | maximize | free | cofree
CircMin ::= Symbol Symbol*
CircVars ::= Symbol*

46
Note: @Till: why are the bridges not in this list?
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Translation ::= renaming LogicTranslation* [SymbolMapItems]
LogicTranslation ::= logic-translation OMSLangTrans
Reduction ::= hidden LogicReduction* [SymbolItems]

| revealed SymbolItems
LogicReduction ::= logic-reduction OMSLangTrans
SymbolItems ::= symbol-items Symbol Symbol*
SymbolMapItems ::= symbol-map-items SymbolOrMap SymbolOrMap*
Extraction ::= extraction QualInterfaceSignature
Approximation ::= approximation [QualInterfaceSignature] [LogicRef]
Filtering ::= select BasicOMS | reject BasicOMS
ConsStrength ::= Conservative | MonoDef
MonoDef ::= monomorphic | weak-definitional | definitional
ExtConsStrength ::= ConsStrength | Implied
Implied ::= implied
Conservative ::= consequence-conservative | model-conservative
QualInterfaceSignature ::= keep-signature InterfaceSignature

| remove-signature InterfaceSignature
InterfaceSignature ::= SymbolItems
ImportName ::= IRI
ExtensionName ::= IRI

An OMS de�nition OMSDefn names an OMS.
It can be optionally marked as consistent, monomorphic or having a unique model using

ConsStrength.3. An SymbolItems, used in an OMS Reduction, is a list of non-logical
symbols that are to be hidden. A LogicReduction denotes a logic reduction to a less
expressive OMS language. A SymbolMapItems, used in OMS Translations, maps symbols
to symbols,47 or a logic translation. An OMS language translation OMSLangTrans can be Note(47)
either speci�ed by its name, or be inferred as the default translation to a given target (the
source will be inferred as the OMS language of the current OMS).

OMSDefn ::= oms-defn OMSName [ConsStrength] OMS
Symbol ::= IRI
SymbolMap ::= symbol-map Symbol Symbol
SymbolOrMap ::= Symbol | SymbolMap
Term ::= <an expression specific to a basic OMS language>
Sentence ::= <an expression specific to a basic OMS language>
OMSName ::= IRI
OMSRef ::= IRI
ExtensionRef ::= IRI
LoLaRef ::= LanguageRef | LogicRef

3More precisely, ’consequence-conservative’ here requires the OMS to have a non-trivial set of
logical consequences, while ’model-conservative’ requires its satis�ability. ’definitional’
expresses the unique model property; this may be interesting for OMS (e.g. returned by model
�nders) that are used to describe single models.

47
Note: FYI: On 2012-07-18 we decided not to specify lambda-style symbol-to-term mappings for now.
Would be convenient, but specifying its semantics in an OMS language independent way would require
additional institution infrastructure – and the same effect can be achieved by auxiliary definitional ex-
tensions, cf. Colore (so promote this, informatively, as a “best practice”?) TM: Alternatively, we could
use a recent notion of institutional monad. This builds an extended signature with all terms. Then one
can use ordinary signature morphisms into such extended signatures.
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LanguageRef ::= IRI
LogicRef ::= IRI
SyntaxRef ::= IRI
OMSLangTrans ::= named-trans OMSLangTransRef | default-trans LoLaRef
OMSLangTransRef ::= IRI

9.5. OMS Mappings
An OMS mapping provides a connection between two OMS. An OMS mapping de�nition is
the de�nition of either a named interpretation (IntprDefn, Entailment or EquivDefn),
a named declaration of the relation between a module of an OMS and the whole OMS
(ModuleRelDefn), or a named alignment (AlignDefn).
The SymbolMapItems in an interpretation always must lead to a signature morphism; a

proof obligation expressing that the (translated) source OMS logically follows from the target
OMS is generated. An entailment is a variant where all symbols are mapped identically, while
an equivalence states that the model classes of two OMS are in bijective correspondence.
Interpretations, entailments and equivalences between OMS networks are also possible. An

interpretation between OMS networks has to specify both a mapping between the nodes of
the OMS network, as well as, for each node, a symbol map from the OMS of that node to
the target OMS to which it is mapped.
In contrast to this functional style of mapping symbols, an alignment provides a relational

connection between two OMS, using a set of Correspondences. Each correspondence may
relate some OMS non-logical symbol to another one (possibly given by a term) with an
optional con�dence value. Moreover, the relation between the two non-logical symbols can
be explicitly speci�ed (like being equal, or only being subsumed) in a similar way to the
Alignment API [14]. The relations that can be used in a correspondence are equivalence,
disjointness, subsumption, membership (the last two with a variant for each direction) or a
user-de�ned relation that is stored in a registry and must be pre�xed with http://www.
omg.org/spec/DOL/correspondences/. A default correspondence can be used; it is
applied to all pairs of non-logical symbols with the same local names. The default relation
in a correspondence is equivalence, unless a di�erent relation is speci�ed in a surrounding
'CorrespondenceBlock'. Using an AlignCard, left and right injectivity and totality of the
alignment can be speci�ed (the default is left-injective, right-injective, left-total and right-
total). With AlignSem, di�erent styles of networks of aligned ontologies (to be interpreted
in a logic-speci�c way) of alignments can be speci�ed: whether a single domain is assumed,
all domains are embedded into a global domain, or whether several local domains are linked
(�contextualized�) by relations.
A ModuleRelDefn declares that a certain OMS actually is a module of some other OMS

with respect to the InterfaceSignature.

MappingDefn ::= IntprDefn
| Entailment
| EquivDefn
| ModuleRelDefn
| AlignDefn

IntprDefn ::= intpr-defn IntprName [Conservative] IntprType
LogicTranslation* [SymbolMapItems]

| refinement IntprName Refinement
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9. DOL abstract syntax

IntprName ::= IRI
IntprType ::= intpr-type OMS OMS
Refinement ::= ref-oms OMS

| ref-network Network
| ref-composition Refinement Refinement
| simple-oms-ref OMS RefMap Refinement
| simple-network-ref Network RefMap Refinement

RefMap ::= refmap-oms [LogicTranslation] [SymbolMapItems]
| refmap-network NodeMap*

NodeMap ::= node-map OMSName OMSName LogicTranslation*
[SymbolMapItems]

Entailment ::= entailment EntailmentName EntailmentType
EntailmentType ::= oms-oms-entailment OMS OMS

| network-oms-entailment Network OMSName OMS
| network-network-entailment Network Network

EntailmentName ::= IRI
EquivDefn ::= equiv-defn EquivName EquivType
EquivName ::= IRI
EquivType ::= oms-equiv OMS OMS OMS

| network-equiv Network Network Network
ModuleRelDefn ::= module-defn ModuleName [Conservative]

ModuleType InterfaceSignature
ModuleName ::= IRI
ModuleType ::= module-type OMS OMS
AlignDefn ::= align-defn AlignName [AlignCard] AlignType

AlignSem Correspondence*
4

AlignName ::= IRI
AlignCards ::= AlignCardForward AlignCardBackward
AlignCardForward ::= align-card-forward AlignCard
AlignCardBackward ::= align-card-backward AlignCard
AlignCard ::= injective-and-total

| injective
| total
| neither-injective-nor-total

AlignType ::= align-type OMS OMS
AlignSem ::= single-domain

| global-domain
| contextualized-domain

Correspondence ::= CorrespondenceBlock
| SingleCorrespondence
| default-correspondence

CorrespondenceBlock ::= correspondence-block [RelationRef]
[Confidence] Correspondence
Correspondence*

SingleCorrespondence ::= correspondence SymbolRef [RelationRef]

4Note that this grammar uses �type� as in �the type of a function�, whereas the Alignment API
uses �type� forthe totality/injectivity of the relation/function. For the latter, this grammar uses
�cardinality�.
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[Confidence] TermOrSymbolRef
[CorrespondenceID]

CorrespondenceID ::= IRI
SymbolRef ::= IRI
TermOrSymbolRef ::= Term | SymbolRef
RelationRef ::= subsumes

| is-subsumed
| equivalent
| incompatible
| has-instance
| instance-of
| default-relation
| IRI

Confidence ::= Double

Double ::= < a number ∈ [0, 1] >

A symbol map in an interpretation is required to cover all non-logical symbols of the
source OMS; the semantics speci�cation in clause 11 makes this assumption5.

9.6. Queries
Queries are a means to extract information from an OMS. DOL's QueryDefns cover �select�-
type queries that deliver an answer substitution for the query variables. (Answer) substitu-
tions can be stored separately, using a SubstDefn. A ResultDefn expresses that certain
answer substitutions are the result of a query. Optionally, a result can be expressed to be
complete, meaning that it comprises all answer substitutions to the query.

QueryRelatedDefn ::= QueryDefn | SubstDefn | ResultDefn
QueryDefn ::= select-query-defn QueryName Vars Sentence

OMS [OMSLangTrans]
SubstDefn ::= subst-defn SubstName OMS OMS SymbolMap
ResultDefn ::= result-def ResultName SubstName SubstName*

QueryName [Complete]
QueryName ::= IRI
SubstName ::= IRI
ResultName ::= IRI
Vars ::= Symbol*
Complete ::= complete

9.7. Identifiers
This section speci�es the abstract syntax of identi�ers of DOL OMS and their elements.

5Mapping a non-logical symbol twice is an error. Mapping two source non-logical symbols to the
same target non-logical symbol is legal, this then is a non-injective OMS mapping.
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9.7.1. IRIs
In accordance with best practices for publishing OMS on the Web, identi�ers of OMS and
their elements should not just serve as names, but also as locators, which, when dereferenced,
give access to a concrete representation of an OMS or one of its elements. (For the speci�c
case of RDFS and OWL OMS, these best practices are documented in [27]. The latter
is a specialization of the linked data principles, which apply to any machine-processable
data published on the Web [37].) It is recommended that publicly accessible DOL OMS be
published as linked data.
Therefore, in order to impose fewer conformance requirements on applications, DOL re-

quires the use of IRIs for identi�cation per IETF/RFC 3987:2005. It is recommended that
libraries use IRIs that translate to URLs when applying the algorithm for mapping IRIs to
URIs speci�ed in IETF/RFC 3987:2005, Section 3.1. DOL descriptions of any element of a
library that is identi�ed by a certain IRI should be located at the corresponding URL, so
that agents can locate them. As IRIs are speci�ed with a concrete syntax only in IETF/RFC
3987:2005, DOL adopts the latter into its abstract syntax as well as all of its concrete syntaxes
(serializations)
In accordance with semantic web best practices such as the OWL Manchester Syntax [23],

this OMG Speci�cation does not allow relative IRIs, and does not o�er a mechanism for
de�ning a base IRI, against which relative IRIs could be resolved.
Concerning these languages, note that they allow arbitrary IRIs in principle, but in practice

they strongly recommend using IRIs consisting of two components [27]:

namespace an IRI that identi�es the complete OMS (a basic OMS in DOL terminology),
usually ending with # or /

local name a name that identi�es a non-logical symbol within an OMS

IRI ::= full-iri FullIRI | curie CURIE6

FullIRI ::= < as defined by the IRI production in IETF/RFC 3987:2005 >

9.7.2. Abbreviating IRIs using CURIEs
As IRIs tend to be long, and as syntactic mechanisms for abbreviating them have been stan-
dardized, it is recommended that applications employ such mechanisms and support ex-
panding abbreviatory notations into full IRIs. For specifying the semantics of DOL, this OMG
Speci�cation assumes full IRIs everywhere, but the DOL abstract syntax adopts CURIEs
(compact URI expressions) as an abbreviation mechanism, as it is the most �exible one that
has been standardized to date.
The CURIE abbreviation mechanism works by binding pre�xes to IRIs. A CURIE consists

of a pre�x, which may be empty, and a reference. If there is an in-scope binding for the pre�x,
the CURIE is valid and expands into a full IRI, which is created by concatenating the IRI
bound to the pre�x and the reference.
DOL adopts the CURIE speci�cation of RDFa Core 1.1 W3C/TR REC-rdfa-core:2013,

Section 6 with the following changes:

� DOL does not support the declaration of a �default pre�x� mapping (covering CURIEs
such as :name).

6speci�ed below in clause 9.7.2
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� DOL does support the declaration of a �no pre�x� mapping (covering CURIEs such as
name). If there is no explicit declaration for the �no pre�x�, it defaults to a context-
sensitive expansion mechanism, which always prepends the library IRI (in the context
of a structured OMS where named OMS a referenced) resp. the current OMS IRI (in
the context of a basic OMS) to a symbol name. Both the separator between the library
and the OMS name and that between the OMS name and the symbol name can be
declared (using the keyword separators), and both default to �//�.

� DOL does not make use of the safe_curie production.

� DOL does not allow binding a relative IRI to a pre�x.

� Concrete syntaxes of DOL are encouraged but not required to support CURIEs.7

CURIEs can occur in any place where IRIs are allowed, as stated in clause 9.7.1. Informa-
tively, we can restate the CURIE grammar supported by DOL as follows:

CURIE ::= [Prefix] Reference
Prefix ::= NCName ’:’< see �NCName� in W3C/TR REC-xml-names:2009, Section 3
>
Reference ::= Path [Query] [Fragment]
Path ::= ipath-absolute | ipath-rootless | ipath-empty< as de�ned in
IETF/RFC 3987 >
Query ::= ’?’ iquery< as de�ned in IETF/RFC 3987 >
Fragment ::= ’#’ ifragment< as de�ned in IETF/RFC 3987 >

Pre�x mappings can be de�ned at the beginning of a library (speci�ed in clause 9.2; these
apply to all parts of the library, including basic OMS as clari�ed in clause 9.7.3). Their syntax
is:

PrefixMap ::= prefix-map PrefixBinding*
PrefixBinding ::= prefix-binding BoundPrefix IRIBoundToPrefix

[Separators]
BoundPrefix ::= bound-prefix [Prefix]
IRIBoundToPrefix ::= full-iri FullIRI
Separators ::= separators String String
String ::= < any list of unicode characters >

Bindings in a pre�x map are evaluated from left to right. Authors should not bind the
same pre�x twice, but if they do, the later binding wins.

9.7.3. Mapping identifiers in basic OMS to IRIs
While DOL uses IRIs as identi�ers throughout, basic OMS languages do not necessarily do;
for example:

� OWL W3C/TR REC-owl2-syntax:2009, Section 5.5 does use IRIs.

� Common Logic ISO/IEC 24707:2007 supports them but does not enforce their use.

7This is a concession to having an RDF-based concrete syntax among the normative concrete syn-
taxes. RDFa is the only standardized RDF serialization to support CURIEs so far. Other seri-
alizations, such as RDF/XML or Turtle, support a subset of the CURIE syntax, whereas some
machine-oriented serializations, including N-Triples, only support full IRIs.
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� F-logic [32] does not use them at all.

However, DOL OMS mappings as well as certain operations on OMS require making un-
ambiguous references to non-logical symbols of basic OMS (SymbolRef). Therefore, DOL
provides a function that maps global identi�ers used within basic OMS to IRIs. This mapping
a�ects all non-logical symbol identi�ers (such as class names in an OWL ontology), but not
locally-scoped identi�ers such as bound variables in Common Logic ontologies. DOL reuses
the CURIE mechanism for abbreviating IRIs for this purpose (cf. clause 9.7.2).
CURIEs that have a pre�x may not be acceptable identi�ers in every serialization of a

basic OMS language, as the standard CURIE separator character, the colon (:), may not
be allowed in identi�ers. Therefore, the declaration of DOL-conformance of the respective
serialization (cf. clause 2.2) may de�ne an alternative CURIE separator character, or it may
forbid the use of pre�xed CURIEs altogether.
The IRI of a non-logical symbol identi�er in a basic OMS O is determined by the following

function:

Require: D is a library
Require: O is a basic OMS in serialization S
Require: id is the identi�er in question, identifying a symbol in O according to the speci�-
cation of S

Ensure: i is an IRI
if id represents a full IRI according to the speci�cation of S then
i← id

else
{�rst construct a pattern cp for CURIEs in S, then match id against that pattern}
if S de�nes an alternative CURIE separator character cs then

sep ← cs
else if S forbids pre�xed CURIEs then

sep ← unde�ned
else

sep ← : {the standard CURIE separator character}
end if
{The following statements construct a modi�ed EBNF grammar of CURIEs; see ISO/IEC
14977:1996 for EBNF, and clause 9.7.2 for the original grammar of CURIEs.}
if sep is de�ned then

cp ← [NCName, sep],Reference
else

cp ← Reference
end if
if id matches the pattern cp, where ref matches Reference then
if the match succeeded with a non-empty NCName pn then
p← concat(pn, :)

else
p← no pre�x

end if
if O binds p to an IRI pi according to the speci�cation of S then

nsi ← pi
else
P ← the innermost pre�x map in D, starting from the place of O inside D, and
going up the abstract syntax tree towards the root of D
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while P is de�ned do
if P binds p to an IRI pi then

nsi ← pi
break out of the while loop

end if
P ← the next pre�x map in D, starting from the place of the current P inside
D, and going up the abstract syntax tree towards the root of D

end while
return an error

end if
i← concat(nsi , ref )

else
return an error

end if
end if
return i

This mechanism applies to basic OMS given inline in a library document (BasicOMS),
not to OMS in external documents (OMSInConformingLanguage); the latter shall be self-
contained.
While CURIEs used for identifying parts of a library (cf. clause 9.7.2) are merely syntac-

tic sugar, the pre�x map for a basic OMS is essential to determining the semantics of the
basic OMS within the library. Therefore, any DOL serialization shall provide constructs for
expressing such pre�x maps, even if the serialization does not support pre�x maps otherwise.

48 Note(48)

48
Note: TODO: somewhere we need to mention semantic annotations to embedded fragments in con-
forming OMS languages, e.g. %implied
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10.1. Document type
MIME type application/dol+text

Filename extension .dol

10.2. Concrete Syntax
At several places, the concrete syntax uses the non-terminal ’end’ to mark the end of a
de�nition or declaration. Tools may make this ’end’ optional. However, in this standard,
we insist on the ’end’, because it may be needed to e�ectively disambiguate heterogeneous
texts.

10.2.1. Libraries

Library ::= [PrefixMap] LibraryDefn
| OMSInConformingLanguage

LibraryDefn ::= ’library’ LibraryName Qualification LibraryItem*
OMSInConformingLanguage ::= < language and serialization specific >
LibraryItem ::= LibImport

| OMSDefn
| NetworkDefn
| MappingDefn
| QueryRelatedDefn
| Qualification

LibImport ::= ’import’ LibraryName
Qualification ::= LanguageQual | LogicQual | SyntaxQual
LanguageQual ::= ’language’ LanguageRef
LogicQual ::= ’logic’ LogicRef
SyntaxQual ::= ’serialization’ SyntaxRef
LibraryName ::= IRI

PrefixMap ::= ’%prefix(’ PrefixBinding* ’)%’
PrefixBinding ::= BoundPrefix IRIBoundToPrefix [Separators]
BoundPrefix ::= ’:’ | Prefix<see de�nition in clause 9.7.2>49 Note(49)
IRIBoundToPrefix ::= ’<’ FullIRI ’>’

49
Note: Q-AUT: I think that, in contrast to OWL Manchester, we can allow prefix names that match
keywords of the DOL syntax, as we are enclosing the whole prefix map into an annotation construct –
right?
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Separators ::= ’separators’ String String
NetworkDefn ::= NetworkKeyword NetworkName ’=’

[ConsStrength] Network
NetworkKeyword ::= ’network’
NetworkName ::= IRI
Network ::= NetworkElements [ExcludeExtensions]
NetworkElements ::= NetworkElement ( ’,’ NetworkElement )*
NetworkElement ::= [Id ’:’] OMSOrMappingorNetworkRef
ExcludeExtensions ::= ’excluding’ ExtensionRef ( ’,’ ExtensionRef )*
OMSOrMappingorNetworkRef ::= IRI
Id ::= Letter LetterOrDigit*

Note that we denote the empty pre�x (called �no pre�x� in W3C/TR REC-rdfa-core:2013,
Section 6) by a colon inside the pre�x map, but completely omit it in CURIEs. This is the
style of the OWL Manchester syntax [23] but di�ers from the RDFa Core 1.1 syntax.

10.2.2. OMS

BasicOMS ::= OMSInConformingLanguage
MinimizableOMS ::= BasicOMS | OMSRef [ImportName]
ExtendingOMS ::= MinimizableOMS

| MinimizeKeyword ’{’ MinimizableOMS ’}’
| OMS Extraction

OMS ::= ExtendingOMS
| OMS Minimization
| OMS Translation
| OMS Reduction
| OMS Approximation
| OMS Filtering
| OMS ’and’ [ConsStrength] OMS
| OMS ’then’ ExtensionOMS
| Qualification* ’:’ GroupOMS
| OMS ’bridge’ Translation* ExtendingOMS
| ’combine’ NetworkElements [ExcludeExtensions]
| OMS ’with’ SubstName
| GroupOMS

Minimization ::= MinimizeKeyword CircMin [CircVars]
MinimizeKeyword ::= ’minimize’

| ’closed-world’
| ’maximize’
| ’free’
| ’cofree’

CircMin ::= Symbol Symbol*
CircVars ::= ’vars’ (Symbol Symbol*)
GroupOMS ::= ’{’ OMS ’}’ | OMSRef
Translation ::= ’with’ LogicTranslation* SymbolMapItems

| ’with’ LogicTranslation LogicTranslation*
LogicTranslation ::= ’translation’ OMSLangTrans
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Reduction ::= ’hide’ LogicReduction* SymbolItems
| ’hide’ LogicReduction LogicReduction*
| ’reveal’ SymbolItems

LogicReduction ::= ’along’ OMSLangTrans
SymbolItems ::= Symbol ( ’,’ Symbol )*
SymbolMapItems ::= SymbolOrMap ( ’,’ SymbolOrMap )*
Extraction ::= ’extract’ InterfaceSignature

| ’remove’ InterfaceSignature
Approximation ::= ’forget’ InterfaceSignature [’keep’ LogicRef]

| ’keep’ InterfaceSignature [’keep’ LogicRef]
| ’keep’ LogicRef

Filtering ::= ’select’ BasicOMS | ’reject’ BasicOMS
ExtensionOMS ::= [ExtConsStrength] [ExtensionName] ExtendingOMS
ConsStrength ::= Conservative | ’%mono’ | ’%wdef’ | ’%def’
ExtConsStrength ::= ConsStrength | ’%implied’
Conservative ::= ’%ccons’ | ’%mcons’
InterfaceSignature ::= SymbolItems
ImportName ::= ’%(’ IRI ’)%’
ExtensionName ::= ’%(’ IRI ’)%’
OMSkeyword ::= ’ontology’

| ’onto’
| ’specification’
| ’spec’
| ’model’
| ’OMS’

OMSDefn ::= OMSkeyword OMSName ’=’ [ConsStrength] OMS ’end’
Symbol ::= IRI
SymbolMap ::= Symbol ’|->’ Symbol
SymbolOrMap ::= Symbol | SymbolMap
OMSName ::= IRI
OMSRef ::= IRI
ExtensionRef ::= IRI
LanguageRef ::= IRI
LogicRef ::= IRI
SyntaxRef ::= IRI
LoLaRef ::= LanguageRef | LogicRef

OMSLangTrans ::= OMSLangTransRef | ’->’ LoLaRef
OMSLangTransRef ::= IRI

50 Note(50)

10.2.3. OMS Mappings

MappingDefn ::= IntprDefn

50
Note: %safe is more a statement about an import of a module, and hence should be a statement in an
OMS network. Recall: ModuleProperties = ’%safe’ ;
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| Entailment
| EquivDefn
| ModuleRelDefn
| AlignDefn

IntprDefn ::= IntprKeyword IntprName [Conservative] ’:’
IntprType ’end’

| IntprKeyword IntprName [Conservative] ’:’
IntprType ’=’ LogicTranslation*
[SymbolMapItems] ’end’

| IntprKeyword IntprName ’=’ Refinement ’end’
IntprKeyword ::= ’interpretation’ | ’view’ | ’refinement’
IntprName ::= IRI
IntprType ::= GroupOMS ’to’ GroupOMS
Refinement ::= GroupOMS

| NetworkName
| Refinement ’then’ Refinement
| GroupOMS ’refined’ [RefMap] ’to’ Refinement
| NetworkName ’refined’ [RefMap] ’to’ Refinement

RefMap ::= ’via’ LogicTranslation [SymbolMapItems]
| ’via’ [LogicTranslation] SymbolMapItems
| ’via’ NodeMap ( ’,’ NodeMap )*

NodeMap ::= OMSName ’|->’ OMSName
[’using’ LogicTranslation* [SymbolMapItems]]

Entailment ::= ’entailment’ EntailmentName ’=’
EntailmentType ’end’

EntailmentName ::= IRI
EntailmentType ::= GroupOMS ’entails’ GroupOMS

| OMSName ’in’ Network ’entails’ GroupOMS
| Network ’entails’ Network

EquivDefn ::= ’equivalence’ EquivName ’:’ EquivType ’end’
EquivName ::= IRI
EquivType ::= GroupOMS ’<->’ GroupOMS ’=’ OMS

| Network ’<->’ Network ’=’ Network
ModuleRelDefn ::= ’module’ ModuleName [Conservative] ’:’

ModuleType ’for’ InterfaceSignature
ModuleName ::= IRI
ModuleType ::= GroupOMS ’of’ GroupOMS
AlignDefn ::= ’alignment’ AlignName [AlignCards] ’:’

AlignType ’end’
| ’alignment’ AlignName [AlignCards] ’:’
AlignType ’=’ Correspondence
( ’,’ Correspondence )* ’assuming’ AlignSem
’end’

AlignName ::= IRI
AlignCards ::= AlignCardForward AlignCardBackward
AlignCardForward ::= AlignCard
AlignCardBackward ::= AlignCard
AlignCard ::= ’1’ | ’?’ | ’+’ | ’*’
AlignType ::= GroupOMS ’to’ GroupOMS
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AlignSem ::= ’SingleDomain’
| ’GlobalDomain’
| ’ContextualizedDomain’

Correspondence ::= CorrespondenceBlock | SingleCorrespondence | ’*’
CorrespondenceBlock ::= ’relation’ [RelationRef] [Confidence] ’{’

Correspondence ( ’,’ Correspondence )* ’}’
SingleCorrespondence ::= SymbolRef [RelationRef] [Confidence]

TermOrSymbolRef [CorrespondenceId]
CorrespondenceId ::= ’%(’ IRI ’)%’
SymbolRef ::= IRI
TermOrSymbolRef ::= Term | SymbolRef
RelationRef ::= ’>’ | ’<’ | ’=’ | ’%’ | ’ni’ | ’in’ | IRI
Confidence ::= Double

Double ::= < a number ∈ [0, 1] >

10.2.4. Queries

QueryRelatedDefn ::= QueryDefn | SubstDefn | ResultDefn
QueryDefn ::= ’query’ QueryName ’=’ ’select’ Vars ’where’ Sentence

’in’ GroupOMS [’along’ OMSLangTrans] ’end’
SubstDefn ::= ’substitution’ SubstName ’:’ GroupOMS ’to’

GroupOMS ’=’ SymbolMapItems ’end’
ResultDefn ::= ’result’ ResultName ’=’ SubstName

( ’,’ SubstName )* ’for’ QueryName [’%complete’]
’end’

QueryName ::= IRI
SubstName ::= IRI
ResultName ::= IRI
Vars ::= Symbol ( ’,’ Symbol )*

10.3. Identifiers

IRI ::= ’<’ FullIRI ’>’ | CURIE
FullIRI ::= < an IRI as defined in IETF/RFC 3987:2005 >
CURIE ::= [Prefix] Reference
Prefix ::= NCName ’:’< see �NCName� in W3C/TR REC-xml-names:2009, Section 3
>
Reference ::= Path [Query] [Fragment]
Path ::= ipath-absolute | ipath-rootless | ipath-empty< as de�ned in
IETF/RFC 3987 >
Query ::= ’?’ iquery< as de�ned in IETF/RFC 3987 >
Fragment ::= ’#’ ifragment< as de�ned in IETF/RFC 3987 >

57



10. DOL text serialization

Table 10.1.: Key Signs

Sign Unicode Code Point Basic Latin substitute

{ U+007B LEFT CURLY BRACKET
} U+007D RIGHT CURLY BRACKET
: U+003A COLON
= U+003D EQUALS SIGN
, U+002C COMMA
7→ U+21A6 RIGHTWARDS ARROW FROM BAR |->
� U+2192 RIGHTWARDS ARROW ->

In a CURIE without a pre�x, the reference part is not allowed to match any of the
keywords of the DOL syntax (cf. clause ).

10.4. Lexical Symbols
The character set for the DOL text serialization is the UTF-8 encoding of Unicode ISO/IEC
10646. However, OMS can always be input in the Basic Latin subset, also known as US-
ASCII.1 For enhanced readability of OMS, the DOL text serialization particularly supports
the native Unicode glyphs that represent common mathematical operators.

10.4.1. Key Words and Signs
The lexical symbols of the DOL text serialization include various key words and signs that
occur as terminal symbols in the context-free grammar in annex 10.2. Key words and signs
that represent mathematical signs are displayed as such, when possible, and those signs that
are available in the Unicode character set may also be used for input.

Key Words

Key words are always written lowercase. The following key words are reserved, and are not
available for use as variables or as CURIEs with no pre�x2, although they can be used as
parts of tokens.
and end hide interpretation library logic minimize network

model onto ontology spec specification reveal then to vars view with keep
forget select reject

Key Signs

Table 10.1 following key signs are reserved, and are not available for use as complete identi�ers.
Key signs that are outside of the Basic Latin subset of Unicode may alternatively be encoded
as a sequence of Basic Latin characters.

1In this case, IRIs will have to be mapped to URIs following section 3.1 of IETF/RFC 3987:2005.
2In such a case, one can still rename a�ected variables, or declare a pre�x binding for a�ected
CURIEs, or use absolute IRIs instead. None of these rewritings changes the semantics.
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10.5. Integration of Serializations of Conforming
Languages

Any document providing an OMS in a serialization of a DOL conforming language can be
used as-is in DOL, by reference to its IRI.
The following cases apply for injecting identi�ers into fragments of OMS languages, de-

pending on the conformance level of the respective serialization of the OMS language used in
terms of section 2.2:

XML conformance Identi�ers are added to XML elements by using the IRI-valued dol:id
XML attribute from the http://www.omg.org/spec/DOL/0.8/xml namespace, or,
if the serialization does not support this attribute, by adding a dol:id XML element as
the �rst child, containing exactly one text node with the IRI.

RDF conformance The RDF data model itself enables the assignment of IRI identi�ers to
all resources.

Text conformance Identi�ers are added by inserting a special comment immediately3 after
the structural OMS element to be annotated, or, if this is not allowed and no ambiguity
arises from inserting the comment before the structural element, by doing the latter.
The complete comment shall read %(I)% if the language uses the % character to
introduce comments, where I is the identi�er IRI. If the language uses a di�erent
comment syntax, the content of the comment shall start with %(I)%, possibly preceded
by whitespace.

Standoff markup conformance Standard mechanisms such as XPointer (W3C/TR REC-
xptr-framework:2003) or IETF/RFC 5147 shall be used as means of non-destructively
assigning a URI to pieces of XML or text in the given OMS serialization.

51 Note(51)
Where the given OMS language does not provide a way of assigning IRIs to a desired

subject of an annotation (e.g. if one wants to annotate an import in OWL), a library may
employ RDF annotations that use

3The serialization may allow whitespace between the keyword and the comment.
51
Note: TODO: injection of identifiers addressed, but we also had %implies etc. The latter will probably
be handled in a similar way, but I don’t know how exactly.
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11. DOL semantics
DOL is a logical language with a precise formal semantics. The semantics gives DOL a
rock-solid foundation, and provides increased trustworthiness in applications based on OMS
written in DOL. The semantics of DOL is moreover the basis for formal interoperability, as
well as for the meaningful use of logic-based tools for DOL, such as theorem provers, model-
checkers, SMT solvers etc. Last but not least, the semantics has provided valuable feedback
on the language design, and has led to some corrections on the abstract syntax. These reasons,
plus the requirement in the OntoIOp RFP to provide a semantics, have lead us to include
the semantics in the standard document proper, even though the semantics is quite technical
and therefore has a more limited readership than the other chapters of this standard.
The semantics starts with the theoretical foundations. Since DOL is a language that can be

applied to a variety of logics and logic translations, it is based on some heterogeneous logical
environment. Hence, the most important need is to capture precisely what a heterogeneous
logical environment is.
The DOL semantics itself gives a formal meaning to libraries, OMS network, OMS, OMS

mappings, and queries. For each synactic construct, a semantic domain is given. It speci�es
the range of possible values for the semantics. Additionally, semantic rules are presented,
mapping the abstract syntax to some suitable semantic domain.

11.1. Theoretical foundations of the DOL semantics
We now specify the theoretical foundations of the semantics of DOL. The notions of institution
and institution comorphism and morphism are introduced, which provide formalizations of
the terms logic, resp. logic translation, resp. logic reduction.
Since DOL covers OMS written in one or several logical systems, the DOL semantics needs

to clarify the notion of logical system. Traditionally, logicians have studied abstract logical
systems as sets of sentences equipped with an entailment relation `. Such an entailment
relation can be generated in two ways: either via a proof system, or as the logical consequence
relation for some model theory. We here follow the model-theoretic approach, since this is
needed for many of the DOL constructs, and moreover, ontology, modeling and speci�cation
languages like OWL, Common Logic, or Casl come with a model-theoretic semantics, or
(like UML class diagrams) can be equipped with one.
Hence, we recall the notion of satisfaction system [7], called `rooms' in the terminology of

[18]. They capture the Tarskian notion of satisfaction of a sentence in a model in an abstract
way.

De�nition 1 A triple R = (Sen,M, |=) is called a satisfaction system, or room, if R
consists of

� a set Sen of sentences,

� a classM of models, and

� a binary relation |= ⊆M× Sen, called the satisfaction relation.
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While this signature-free treatment enjoys simplicity and is wide-spread in the literature,
many concepts and de�nitions found in logics, e.g. the notion of a conservative extension, in-
volve the vocabulary or signature Σ used in sentences. Signatures can be extended with new
non-logical symbols, or some of these symbols can be renamed; abstractly, this is captured
using signature morphisms. 52 This leads to the notion of institution. An institution is noth- Note(52)
ing more than a family of satisfaction systems, indexed by signatures, and linked coherently
by signature morphisms.

De�nition 2 An institution [19] is a quadruple I = (Sign,Sen,Mod, |=) consisting of the
following:

� a category Sign of signatures and signature morphisms,

� a functor Sen : Sign−→Set1 giving, for each signature Σ, the set of sentences Sen(Σ),
and for each signature morphism σ : Σ → Σ′, the sentence translation map Sen(σ) :
Sen(Σ)→ Sen(Σ′), where often Sen(σ)(ϕ) is written as σ(ϕ),

� a functor Mod : Signop → Cat2 giving, for each signature Σ, the category of models
Mod(Σ), and for each signature morphism σ : Σ−→Σ′, the reduct functor Mod(σ) :
Mod(Σ′) → Mod(Σ), where often Mod(σ)(M ′) is written as M ′ �σ, and M ′ �σ is
called the σ-reduct of M ′, while M ′ is called a σ-expansion of M ′�σ,

� a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|,
such that for each σ : Σ−→Σ′ in Sign the following satisfaction condition holds:

(?) M ′ |=Σ′ σ(ϕ) i� M ′�σ|=Σ ϕ

for each M ′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ), expressing that truth is invariant under change
of notation and context. 2

De�nition 3 (Propositional Logic) The signatures of propositional logic are sets Σ of
propositional symbols, and signature morphisms are just functions σ : Σ1 → Σ2 between
these sets. A Σ-model is a function M : Σ → {True, False}, and the reduct of a Σ2-model
M2along a signature morphism σ : Σ1 → Σ2 is the Σ1-model given by the composition of σ
with M2. Σ-sentences are built from the propositional symbols with the usual connectives, and
sentence translation is replacing the propositional symbols along the morphism. Finally, the
satisfaction relation is de�ned by the standard truth-tables semantics. It is straightforward to
see that the satisfaction condition holds.

De�nition 4 (Common Logic - CL) A common logic signature Σ (called vocabulary in
Common Logic terminology) consists of a set of names, with a subset called the set of discourse
names, and a set of sequence markers. A Σ-model consists of a set UR, the universe of
reference, with a non-empty subset UD ⊆ UR, the universe of discourse, and four mappings:

� rel from UR to subsets of UD∗ = {< x1, . . . , xn > |x1, . . . , xn ∈ UD} (i.e., the set of
�nite sequences of elements of UD);

� fun from UR to total functions from UD∗ into UD;

52
Note: Motivate morphisms between models.
1Set is the category having all small sets as objects and functions as arrows.
2Cat is the category of categories and functors. Strictly speaking, Cat is not a category but only a
so-called quasicategory, which is a category that lives in a higher set-theoretic universe.
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� int from names in Σ to UR, such that int(v) is in UD if and only if v is a discourse
name;

� seq from sequence markers in Σ to UD∗.

A Σ-sentence is a �rst-order sentence, where predications and function applications are writ-
ten in a higher-order like syntax: t(s). Here, t is an arbitrary term, and s is a sequence term,
which can be a sequence of terms t1 . . . tn, or a sequence marker. A predication t(s) is inter-
preted by evaluating the term t, mapping it to a relation using rel , and then asking whether the
sequence given by the interpretation s is in this relation. Similarly, a function application t(s)
is interpreted using fun. Otherwise, interpretation of terms and formulae is as in �rst-order
logic. A further di�erence is the presence of sequence terms (namely sequence markers and
juxtapositions of terms), which denote sequences in UD∗, with term juxtaposition interpreted
by sequence concatenation. Note that sequences are essentially a non-�rst-order feature that
can be expressed in second-order logic. For details, see [13].

A CL signature morphism consists of two maps between the sets of names and of sequence
markers, such that the property of being a discourse name is preserved and re�ected.3 Model
reducts leave UR, UD, rel and fun untouched, while int and seq are composed with the
appropriate signature morphism component.

Further examples of institutions are: SROIQ(D), unsorted �rst-order logic, many-sorted
�rst-order logic, and many others. Note that reduct is generally given by forgetting parts of
the model.
For the rest of the section, we work in an arbitrary institution. A theory is a pair (Σ,∆)

where Σ is a signature and ∆ is a set of Σ-sentences. A theory (Σ,∆) is consistent if there
exists a Σ-model M such that M |= ϕ for ϕ ∈ ∆. Semantic entailment is de�ned as
usual: for a theory ∆ ⊆ Sen(Σ) and ϕ ∈ Sen(Σ), we write ∆ |= ϕ, if all models satisfying
all sentences in ∆ also satisfy ϕ. A theory morphism φ : (Σ,∆) → (Σ′,∆′) is a signature
morphism φ : Σ→ Σ′ such that ∆′ |= φ(∆).

Institution comorphisms capture the intuition of encoding or embedding a logic into a more
expressive one.

De�nition 5 (Institution Comorphism) An institution comorphism from an institu-
tion I = (SignI , ModI ,SenI , |=I) to an institution J = (SignJ ,ModJ , SenJ , |=J) consists of
a functor Φ : SignI −→ SignJ , and two natural transformations β : ModJ ◦ Φ =⇒ ModI and
α : SenI =⇒ SenJ ◦ Φ, such that

M ′ |=J
Φ(Σ) αΣ(ϕ)⇔ βΣ(M ′) |=I

Σ ϕ.

holds, called the satisfaction condition.

Here, Φ(Σ) is the translation of the signature Σ from institution I to institution J , αΣ(ϕ)
is the translation of the Σ-sentence ϕ to a Φ(Σ)-sentence, and βΣ(M ′) is the translation (or
perhaps better: reduction) of the Φ(Σ)-model M ′ to a Σ-model. The naturality of α and β
mean that for each signature morphism σ : Σ→ Σ′ in I the following squares commute:

SenI(Σ)

SenI (σ)

��

αΣ // SenJ(Φ(Σ))

SenJ (Φ(σ))

��

ModJ(Φ(Σ′))
βΣ′ //

ModJ (Φ(σ))

��

ModI(Σ′)

ModI (σ)

��
SenI(Σ′)

αΣ′
// SenJ(Φ(Σ′)) ModJ(Φ(Σ))

βΣ

// ModI(Σ)

3That is, a name is a discourse name if and only if its image under the signature morphism is.
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De�nition 6 Given an institution I = (SignI , ModI , SenI , |=I), we can de�ne the institution
of its theories, denoted Ith, as follows. The category of signatures of Ith is the category of
I-theories and I-theory morphisms, that we denote ThI . For each theory (Σ,∆), its sentences
are just Σ-sentences in I, and its models are just Σ-models in I that satisfy the sentences in
∆, while the (Σ,∆)-satisfaction is the Σ-satisfaction of sentences in models of I.

Using this notion, we can now capture logic translations that include axiomatization of
parts of the syntax of the source logic into the target logic.

De�nition 7 Let I = (SignI , ModI , SenI , |=I) and J = (SignJ ,ModJ ,SenJ , |=J) be two in-
stitutions. An theoroidal institution comorphism from I to J is a institution comorphism
from I to Jth.

Institution morphisms capture the intuition of projecting from a more expressive logic to
a less expressive one.

De�nition 8 (Institution Morphism) An institution morphism from an institution
I = (SignI , ModI ,SenI , |=I) to an institution J = (SignJ ,ModJ , SenJ , |=J) consists of a
functor Φ : SignI −→ SignJ , and two natural transformations β : ModI =⇒ ModJ ◦ Φ and
α : SenJ ◦ Φ =⇒ SenI , such that

M |=I
Σ αΣ(ϕ)⇔ βΦ(Σ)(M) |=J

Φ(Σ) ϕ.

holds, called the satisfaction condition.

Colimits are a categorical concept providing means of combining interconnected objects
consistently to this interconnection. They can be employed for constructing larger theories
from already available smaller ones, see [17].
A network4 in a category C is a functor D : G → C, where G is a small category5, and

can be thought of as the shape of the graph of interconnections between the objects of C
selected by the functor D. A cocone of a network D : G→ C consists of an object c of C and
a family of morphisms αi : D(i)−→ c, for each object i of G, such that for each edge of the
network, e : i−→ i′ we have that D(e);αi′ = αi. A colimiting cocone (or colimit) (c, {αi}i∈|G|)
can be intuitively understood as a minimal cocone, i.e. has the property that for any cocone
(d, {βi}i∈|G|) there exists a unique morphism γ : c−→d such that αi; γ = βi. By dropping the
uniqueness condition and requiring only that a morphism γ should exist, we obtain a weak
colimit.
When G is the category • •oo // • with 3 objects and 2 non-identity arrows, the

G-colimits are called pushouts.
A major property of colimits of speci�cations is amalgamation (called `exactness' in [15]).

It can be intuitively explained as stating that models of given speci�cations can be combined
to yield a uniquely determined model of a colimit speci�cation, provided that the original
models coincide on common components. Amalgamation is a common technical assumption
in the study of speci�cation semantics [47].
In the sequel, �x an arbitrary institution I = (Sign,Sen,Mod, |=).

4A network is called a diagram in category theory texts. We prefer this terminology to disambiguate
from UML diagrams.

5That is, it has a set of objects and sets of morphisms between them instead of classes.
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De�nition 9 Given a network D : J −→ SignI , a family of models M = {Mp}j∈|J| is con-
sistent with D (or sometimes compatible with D) if for each node p of D, Mp ∈ Mod(D(p))
and for each edge e : p → q, Mp = Mq|D(e). A cocone (Σ, (µj)j∈|J|) over the network
D : J −→ SignI is called weakly amalgamable if it is mapped to a weak limit by Mod. For
models, this means that for each D-compatible family of models (Mj)j∈|J|, there is a Σ-model
M , called an amalgamation of (Mj)j∈|J|, with M |µj = Mj (j ∈ |J |), and similarly for model
morphisms. If this model is unique, the cocone is called amalgamable. I (or Mod) admits
(�nite) (weak) amalgamation if (�nite) colimit cocones are (weakly) amalgamable. Finally, I
is called (weakly) semi-exact if it has pushouts and admits (weak) amalgamation for these.

[9] studies conditions for existence of weakly amalgamable cocones in a heterogeneous set-
ting, where the network consists of signatures (or theories) in di�erent logics. Since a network
may admit more than one weakly amalgamable cocone, we assume selection operations both
for the weakly amalgamable cocone of a network and for the (potentially non-unique) amalga-
mation of a family of models compatible with the network. This allows us to de�ne a function
colimit taking as argument a network of heterogeneous signatures and returning the selected
weakly amalgamable cocone for the network and a function ⊕ taking as argument a family
of models compatible with a network and returning its selected amalgamation.

11.2. Semantics of DOL language constructs
The semantics of DOL is based on a �xed (but in principle arbitrary) heterogeneous logical
environment. The semantic domains are based on this heterogeneous logical environment. A
speci�c heterogeneous logical environment is given in the annexes.
A heterogeneous logical environment is given by a collection of OMS languages and OMS

language translations6, a collection of institutions, institution morphisms and institution co-
morphisms (serving as logics, logic reductions and logic translations), and a collection of
serializations. Moreover, some of the institution comorphisms are marked as default trans-
lations (but only at most one between a given source and target institution), and there is
a binary supports relation between OMS languages and institutions, and a binary supports
relation between OMS languages and serializations.
We assume that for each institution in the heterogeneous logical environment there is

a trivial signature ∅ with model class M∅ and such that there exists a unique signature
morphism from ∅ to any signature of the institution. Moreover we assume the existence of
a designated error logic in the graph, and a partial union operation on logics, denoted

⋃
:

L1

⋃
L2 = (L, ρ1 : L1 → L, ρ2 : L2 → L), when de�ned. Finally, some of the comorphisms

are marked as default translations and some of the morphisms as default projection, with the
condition that between two institutions at most one comorphism and at most one morphism
is marked as default.
We assume that for each institution, there exist (possibly partial) union and di�erence

operations on signatures. These concepts can be captured in a categorical setting using in-
clusion systems [?]. However, inclusion systems are too strong for our purposes and therefore
we will work under weaker assumptions.

De�nition 10 An inclusive category [?] is a category having a broad subcategory7 which is
a partially ordered class with �nite products and coproducts, called intersection (denoted ∩)
6The terms OMS language and serialization are not de�ned formally. For this semantics, it su�ces
to know that there is a language-speci�c semantics of basic OMS as de�ned below.

7That is, with the same objects as the original category.
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and union (denoted ∪) such that for each pair of objects A,B, A ∪ B is a pushout of A ∩ B
in the category.

A category has pushouts which preserve inclusions i� there exists a pushout

A

��

� � // A′

��
B
� � // B′

for each span where one arrow is an inclusion.
A functor between two inclusive categories is inclusive if it takes inclusions in the source

category to inclusions in the target category.

De�nition 11 An institution is weakly inclusive if

� Sign is inclusive and has pushouts which preserve inclusions,

� Sen is inclusive, and

� each model category have a broad subcategory of inclusions.

Let I be a weakly inclusive institution. We say that I has di�erences, if there is a binary
operation \ on signatures, such that for each pair of signatures Σ1,Σ2, we have:

1. Σ1 \ Σ2 ⊆ Σ1

2. (Σ1 \ Σ2) ∩ Σ2 = ∅
3. for any Σ with the properties 1. and 2. above, Σ ⊆ Σ1 \ Σ2.

This concludes the de�nition of heterogeneous logical environment and the assumptions
made about it.

The semantics of OMS generally depends on a global environment Γ containing:

� a mapping from IRIs to semantics of OMS, OMS mappings, OMS networks and OMS
queries, that we also denote by Γ, providing access to previous de�nitions,

� a pre�x map, denoted Γ.prefix , that stores the declared pre�xes,

� a triple Γ.current that stores the current language, logic and serialization.

If Γ is such a global environment, Γ[IRI 7→ S] extends the domain of Γ with IRI and the
newly added value of Γ in IRI is the semantic entity S. Γ∅ is the empty global environment,
i.e. the domain of Γ∅ is the empty set, the pre�x map is empty and the current triple con-
tains the error logic together with its language and serialization. The union of two global
environments Γ1 and Γ2, denoted Γ1 ∪Γ2, is de�ned only if the domains of Γ1 and Γ2, and of

Γ1.prefix and Γ2.prefix are disjoint, and then Γ1 ∪Γ2(IRI) =

{
Γ1(IRI) if IRI ∈ dom(Γ1)

Γ2(IRI) if IRI ∈ dom(Γ2)
,

Γ1 ∪ Γ2.current = Γ1.current and Γ1 ∪ Γ2.prefix = Γ1.prefix ∪ Γ2.prefix . We will write
Γ.{prefix = PMap} for the global environment that set the pre�x map of Γ to PMap and
Γ.{current = (lang, logic, ser)} for updating the current triple of Γ to (lang, logic, ser).
DOL follows a model-theoretic approach on semantics: the semantics of OMS will be

de�ned as a class of models over some signature of an institution. This is called model-level
semantics. In some cases, but not in all, we can also de�ne a theory-level semantics of an OMS
as a set of sentences over some signature of an institution. The two semantics are related
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by the fact that, when both the model-level and the theory-level semantics of an OMS are
de�ned, they are compatible in the sense that the class of models given by the model-level
semantics is exactly the model class of the theory given by the theory-level semantics.
We will use the following unifying notation for the two semantics of an OMS O:

� the institution of O is denoted Inst(O),

� the signature of O is denoted Sign(O) (which is a signature in Inst(O)),

� the models of O is denoted Mod(O) (which is a class of models over Sign(O)),

� the axioms of Ois denoted Th(O) (which is a set of sentences over Sign(O)).

Moreover, we may denote the semantics of O as a tuple sem(O) = (I,Σ,M,∆) when
Inst(O) = I, Sign(O) = Σ, Mod(O) =M and Th(O) = ∆.
The theory-level semantics of O can be unde�ned, and then so is Th(O). When Th(O) is

de�ned, Mod(O) can be obtained as Mod(O) = {M ∈ Mod(Sign(O)) |M |= Th(O)}.
We assume a language-speci�c semantics of basic OMS, inherited from the OMS language.

For a basic OMS O in a language L based on an institution I we denote by semL(O) the
language-speci�c semantics of O. We moreover assume similar language-speci�c semantics of
a basic OMS fragment O in the context of previous declarations, denoted sem

(Σ,M,∆)
L (O).

Intuitively, OMS mappings denote various types of links between two or more OMS. The
semantics of OMS mappings can be captured uniformly as a graph whose nodes N are labeled
with

� Name(N), the name of the node

� Inst(N), the institution of the node

� Sign(N), the signature of the node

� Mod(N), the class of Sign(N)-models of the node

� Th(N), the set of Th(N)-sentences of the node

and which has two kinds of edges:

� import links (written using single arrows, S → T )

� theorem links (written using double arrows, S ⇒ T )

both labeled with signature morphisms between the signatures of the source and target nodes.
The theory of a node may be unde�ned, as in the case of OMS, and when it is de�ned, the
class of models of that node is the class of models of Th(N). For brevity, we may write
the label of a node as a tuple. We make the simplifying assumption that any OMS can be
assigned a unique name.
We can give the semantics of networks of OMS in two alternative ways. In both cases, the

semantics of a network is a graph and the labels are like in the semantics of OMS mappings.
What di�ers is the labels of edges: in the �rst case, edges are labeled with heterogeneous
signature morphisms (i.e. an edge from the node S to the node T is labeled with a pair (ρ, σ)
where ρ = (Φ, α, β) : Inst(S)→ Inst(T ) is an institution comorphism and σ : Φ(Sign(S))→
Sign(T ) is a signature morphism in Inst(T )), while in the second case, an edge is labeled
with a mapping relating the OMS of the nodes connected by it. The intuition is that network
provide means of putting together graphs of OMS and OMS mappings and of removing sub-
graphs of existing networks. In the �rst variant, the graph of a mapping is added explicitly
to the network, and thus the network may contain more nodes than just those of the OMS
related by the mapping. The second variant provides a more compact representation of the
graph of the network but has the drawback that one cannot operate on the subgraph of a
mapping, e.g. eliminating just a node of it. Also, creating a combination of the network
requires that the graphs of the mappings should be unfolded.
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11.2.1. Semantics of Libraries
We de�ne the semantics of DOL constructs regarding libraries.

sem(Library) = Γ

A library is either a list of de�nitions of OMS, OMS mappings and OMS networks, possibly
starting with a pre�x map, or an OMS in one of the languages supported by the heterogeneous
logical environment.

sem(PrefixMap, LibraryDefn) = Γ′′

where sem(PrefixMap) = PMap, Γ′′ = Γ∅.{prefix = PMap} and sem(Γ′′,LibraryDefn) =
Γ′.

semT (OMSInConformingLanguage) = Γ′′

where Γ′ = Γ∅.{current = L}, with L determined from the extension of the �le containing the
library, semT (Γ′,OMSInConformingLanguage) = (I,Σ,∆), IRI is the IRI of the library
and Γ′′ = Γ′[IRI 7→ (I,Σ,∆)].

semM (OMSInConformingLanguage) = Γ′′

where Γ′ = Γ∅.{current = L}, with L determined from the extension of the �le containing the
library, semM (Γ′,OMSInConformingLanguage) = (I,Σ,M), IRI is the IRI of the library
and Γ′′ = Γ′[IRI 7→ (I,Σ,M)].

sem(Γ,LibraryDefn) = Γ′

sem(Γ,library, LibraryName, Qualification, LibraryItem1, . . .LibraryItemn) =
Γ′

where sem(Γ,Qualification) = Γ′, sem(Γ′,LibraryItem1) = Γ1,
sem(Γ1,LibraryItem2) = Γ2, . . ., sem(Γn−1,LibraryItemn) = Γ′. 53 Note(53)

sem(Γ,OMSInConformingLanguage) = (I,Σ,M,∆)

sem(Γ,OMSInConformingLanguage) = (I,Σ,M,∆)

where I = logic(Γ.current) and semI(OMSInConformingLanguage) = (I,Σ,M,∆).
Note that if the OMS in the library does not conform with the logic determined by the

extension of the library, semI(OMSInConformingLanguage) will be unde�ned.

sem(Γ,LibraryItem) = Γ′

53
Note: LibraryName is not used. How could we use it? It seems that the individual OMS are directly
named with IRIs, and the LibraryName is not relevant for that? Answer from telco: The LibraryName
is an IRI that should (as a good practice, but not enforced) agree with the IRI of the document. Indeed,
this applies to any usage of IRI in the standard. This should be stated in the standard (Christoph). (This
is known as "linked data compliance", a good practice to be encouraged but not to be enforced, as it
would break a lot of old OMS)
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sem(Γ,lib-import, LibName) = Γ ∪ Γ′

where sem(Γ,LibName) = IRI and sem(IRI) = Γ′.
Equations for OMSDefn, NetworkDefn, MappingDefn and QueryRelatedDefn are given

in the next sections.

sem(Γ,Qualification) = Γ′

sem(Γ,lang-select, LanguageRef) = Γ′

where Γ′ = Γ.{current = (LanguageRef, logic′, ser′)} and
logic = logic(Γ.current),

logic′ =

{
logic, if LanguageRef supports logic
default logic for LanguageRef, otherwise

ser = ser(Γ.current)

ser′ =

{
ser(Γ.current), if LanguageRef supports ser
default serialization for LanguageRef, otherwise

sem(Γ,logic-select, LogicRef) = Γ′

where Γ′ = Γ.{current = (lang′,LogicRef, ser)}
lang = lang(Γ.current), ser = ser(Γ.current)

lang′ =

{
lang, if lang supports LogicRef
the unique language supporting LogicRef, otherwise

Note that �the unique language supporting LogicRef� may be unde�ned; in this case, the
semantics of the whole ’logic-select’, LogicRef construct is unde�ned.

sem(Γ,syntax-select, SyntaxRef) = Γ′

where lang = lang(Γ.current), logic = logic(Γ.current) and
Γ′ = Γ.{current = (lang, logic,SyntaxRef)}. The semantics is de�ned only if lang supports
SyntaxRef.

11.2.2. Semantics of Networks
The semantics of networks of OMS is given with the help of a directed graph. Its nodes
and edges are speci�ed by the NetworkElements, which can be OMS, OMS mappings, or
OMS networks. Intuitively, the graph of a network consists of the union of all graphs of the
network elements it contains, where an OMS yields a graph with one isolated node. The
nodes and edges given in the ExcludeExtensions list are then removed from the graph of
the network. An additional Id can be speci�ed for each node, with the purpose of letting the
user specify a pre�x in the colimit of a network for the symbols with the origin in that node
that must be disambiguated.
We are going to make use of the following notations. IfG is a graph, let insert(G,Γ,IRI,Id)

be de�ned as follows:

� if IRI is an OMS in Γ, then a new node named IRI and labeled with Γ(IRI) and with
Id is added to G, unless a node named IRI already exists in G, and in this case G is
left unchanged,

� if IRI is an OMS mapping or a netof work in Γ, it denotes a graph G′. Then the result
is the union of G with G′.
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Similarly, the operation remove(Γ, G,Id) is de�ned as follows:

� if IRI is an OMS in Γ, then the node labeled with IRI and all its incoming and
outgoing edges are removed from G,

� if IRI is an OMS mapping in Γ, then Γ(IRI) is a graph G′. 54 Then all nodes of G′ Note(54)
and all their incoming and outgoing edges in G (which include those in G′) are removed
from G.

� if IRI is a network in Γ, then all the nodes of its graph and all their incoming and
outgoing edges are removed from G.

sem(Γ,NetworkDefn) = Γ′

sem(Γ,network-defn, NetworkName , ConsStrength , Network) = Γ′

where Γ′ = Γ[NetworkName 7→ sem(Γ,Network)].
If ConsStrength is model-conservative, the semantics is only de�ned if sem(Γ,Network) 6=

∅.
If ConsStrength is consequence-conservative, the semantics is not de�ned.55 Note(55)
If ConsStrength is monomorphic, the semantics is only de�ned if sem(Γ,OMS) consist

of exactly one isomorphism class of families of models.
If ConsStrength is weak-definitional, the semantics is only de�ned if sem(Γ,OMS)

is a singleton.
If ConsStrength is definitional, the semantics is only de�ned if sem(Γ,OMS) is a

singleton.

sem(Γ,Network) = G

sem(Γ,network, NetworkElements , ExcludeExtensions) = G′

where sem(Γ,NetworkElements) = G and sem(Γ, G,ExcludeExtensions) = G′.

sem(Γ,NetworkElements) = G′

sem(Γ,NetworkElement1, . . . ,NetworkElementn) = G′

where
G1 = sem(Γ, G∅,NetworkElement1)
G2 = sem(Γ, G1,NetworkElement2)
. . .
G′ = sem(Γ, Gn−1,NetworkElementn)

sem(Γ, G,NetworkElement) = G′

54
Note: Important: by writing excluding V or excluding A, I would want to remove just the mapping from
the network, but NOT the nodes it relates. The nodes should be removed explicitly. Example: we may
want to remove an import between two nodes. This is different now: with a mapping, all nodes get
removed.

55
Note: Is this the best way?
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sem(Γ, G,network-element, Id, IRI) = insert(G,Γ,IRI,Id)

.

sem(Γ, G,ExcludeExtensions) = G′

sem(Γ, G,exclude-imports, IRI1, . . . , IRIn) = G′

where
G1 = remove(Γ, G,IRI1)
G2 = remove(Γ, G1,IRI2)
. . .
G′ = remove(Γ, Gn−1,IRIn)

11.2.3. Semantics of OMS
sem(Γ,BasicOMS) = (I,Σ,M,∆)

For an OMS BasicOMS in a global environment Γ, the semantics is de�ned as follows:

sem(Γ,BasicOMS) = semlogic(Γ.current)(BasicOMS)

sem(Γ, (Σ,M,∆),MinimizableOMS) = (I,Σ′,M′,∆′)

The semantics of a BasicOMSO in the local environment of previous declarations (Σ,M,∆)
and global environment Γ, is given by

� Inst(O) = I,

� Sign(O) = Σ′

� Mod(O) =M′

� Th(O) = ∆′

where semΣ,M,∆
logic(Γ.current)(BasicOMS) = (I,Σ′,M′,∆′) such that Σ is a sub-signature of Σ′,

∆ ⊆ ∆′ and {M ′|Σ |M ′ ∈M′} ⊆ M.
The semantics of an OMS reference O in the local environment of previous declarations

(Σ,M,∆) and global environment Γ, is given by

� Inst(’oms-ref’, O) = Inst(O) which must be the same with the current logic of Γ

� Sign(’oms-ref’, O) = Σ ∪ Sign(O)

� Mod(’oms-ref’, O) = {M ∈Mod(Sign(’oms-ref’, O)) |M |Σ ∈M and M |Sign(O) ∈
Mod(O)}

� Th(’oms-ref’ O) = ∆ ∪Th(O)
56 Note(56)

sem(Γ, (Σ,M,∆),ExtendingOMS) = (I,Σ′,M′,⊥)

56
Note: why allow to change the name of an OMS here?
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The semantics for minimization selects the models that are minimal in the class of all
models with the same interpretation for the local environment (= �xed non-logical symbols,
in the terminology of circumscription).
Formally, we have

� Inst(minimize O) = Inst(O)

� Sig(minimize O) = Sig(O)

� Mod(minimize O) = {M ∈ Mod(O) | M is minimal in {M ′ ∈ Mod(O) | M ′|Σ =
M |Σ}}

� Th(minimize O) = ⊥
where the semantics of the MinimizableOMS O is given relative to the environment Γ and
the context (Σ,M,∆).
The theory-level semantics for minimize O cannot be de�ned.

sem(Γ,OMS) = (I,Σ,M,∆)

OMS is interpreted in a context similar to that for MinimizableOMS, the di�erence being
that there is no local environment.

sem(’minimize-symbol’ , OMS , CircMin , CircVars) = (I,Σ,M′)
where 57 58 Note(57)

Note(58)(I,Σ,M) = semM (OMS), Σmin = sem(CircMin,Σ,

Σvar = sem(CircVars,Σ), Σfixed = Σ \ (Σmin ∪ Σvar )

and

M′ = {M ∈M |M |Σmin∪Σfixed is minimal in {M ′ ∈M|Σmin∪Σfixed |M
′|Σfixed = M |Σfixed }}

The semantics of a translation O′ = translation, OMS, Translation is given by

� Inst(O′) = J , when InstSig(OMS)(Translation) = (Φ, α, β) : Inst(OMS)→ J

� Sig(O′) = Σ′, when MorSig(OMS)(Translation) = σ : Φ(Sig(OMS))→ Σ′

� Mod(O′) = {M ∈ Mod(Σ′) |βΣ(M |σ) ∈ Mod(OMS)}
� Th(O′) = {SenJ(σ)(αΣ(δ)) | δ ∈ Th(OMS)}. It is de�ned only if OMS is �attenable.

The semantics of a reduction O′ = reduction, OMS , Reduction is

� Inst(O′) = J , when InstSig(OMS)(Reduction) = (Φ, α, β) : Inst(OMS)→ J

� Sig(O′) = Σ′, when MorSig(OMS)(Reduction) = σ : Σ′ → Φ(Sig(OMS))

� Mod(O′) = {βΣ(M)|σ |M ∈ Mod(OMS)}
� Th(O′) = ⊥

The semantics of O′ = ’module extract’, OMS, Extraction is

� Inst(O′) = Inst(OMS)

� Sig(O′) = Σ ∪ Sig(Extraction), 59 Note(59)

57
Note: didn’t look at this

58
Note: closed-world, free, cofree, maximize are missing

59
Note: probably this does not work for remove
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� Th(O′) = Th(Extraction)

� Mod(O′) is the class of Th(O)-models
60 Note(60)
The semantics ofO = ’approximation’, OMS, ’keep-signature’, InterfaceSignature, LogicRef

is

� Inst(O) = I when (Φ, α, β) : Inst(OMS) → Inst(LogicRef) is the default projection
(in case LogicRef is missing, it is the identity on Inst(OMS))

� Sig(O) = Φ(Sig(InterfaceSignature))

� Th(O) = α−1
Sig(OMS)(Th(OMS)•) ∩ SenI(Sig(OMS)) 8, i.e. that part of Th(OMS) that can

be expressed in the smaller signature and logic

� Mod(O) is the class of Th(O)-models

The semantics of ’approximation’, OMS, ’remove-signature’, InterfaceSignature,
LogicRef is the same as the semantics of ’approximation’, OMS, ’keep-signature’,
Sig(OMS) \ Sig(InterfaceSignature) , LogicRef .
The semantics ofO = ’filtering’, OMS, Filtering is de�ned only if Sig(Filtering) ⊆

Sig(OMS) and Th(Filtering) ⊆ Th(OMS). We distinguish two cases based on the value of
c, where sem(Γ, (Sig(OMS,Th(OMS),Filtering) = (c, I,Σ,∆) If c =′ select′, the semantics
of O is given by

� Inst(O) = I
� Sig(O) = Σ′ where Σ′ is the smallest signature with Σ ⊆ Σ′ and ∆ ⊆ Sen(Σ′)619 Note(61)

� Th(O) = (Th(OMS) ∩ Sen(Sig(O))) ∪∆

� Mod(O) is the class of all Th(O)-models.

If c =′ reject′, the semantics of O = ’filtering’, OMS, ’reject’, BasicOMS is

� Inst(O) = I
� Sig(O) = Sign(OMS) \ Σ

� Th(O) = Th(OMS) ∩ Sen(Sig(O)) \∆

� Mod(O) is the class of all Th(O)-models.

The semantics of O = ’union’, OMS1, ConsStrength, OMS2 is

� Inst(O) = I where Inst(OMS1)
⋃

Inst(OMS2) = (I, (Φ1, α1, β1) : Inst(OMS1)→ I, (Φ2, α2, β2) :
Inst(OMS2)→ I)

� Sig(O) = Φ1(Sig(OMS1)) ∪ Φ2(Sig(OMS2))

� Mod(O) = {M ∈ Mod(Sig(O)) | βΣi(M |Φi(Sig(OMSi))) ∈ Mod(OMSi), for i = 1, 2}
� Th(O) = α1(Th(OMS1)) ∪ α2(Th(OMS2)).

If ConsStrength is present, then O must be a conservative extension of the appropriate
strength of OMS1.
The semantics of O = extension , OMS , ExtensionOMS is

60
Note: Update cf. last paper
8In practice, one looks for a �nite subset that still is logically equivalent to this set. Note that ∆•

is the set of logical consequences of ∆, i.e. ∆• = Th(∆).
61
Note: the prime was missing but I think it must be there
9If this smallest signature does not exist, the semantics is unde�ned.
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� Inst(O) = Inst(O1) = I (which means that the instutions of OMS and ExtensionOMS
must be the same)

� Sig(O) = Sig(O1) ∪ Σ

� Mod(O) = {M ∈ Mod(Sig(O)) |M |Sig(O1) ∈ Mod(O1) and M |Σ ∈M}
� Th(O) = Th(O1) ∪∆

where (I,Σ,M,∆) = sem(Γ, (Inst(O1),Sig(O1),Mod(O1),Th(O1)),ExtensionOMS).
If ExtConsStrength is a ConsStrength, then O must be a conservative extension of

the appropriate strength of OMS1. If ExtConsStrength is ’%implied’, then we must have
that M |= δ for each M ∈ Mod(OMS) and each δ ∈ ∆.
The semantics of qual-oms, Qualification, OMS in the context Γ is the same as the

semantics of OMS in the context Γ′ given by the semantics of Qualification in the context
Γ. The change of context is local to OMS, which means that if the quali�cation appears as a
term in a larger expression, after its analysis the context will be Γ and not Γ′.

semT (Γ,’bridge’, OMS1, { Translation}, OMS2 ) = (I,Σ,∆)

where
semT (Γ,’bridge’, OMS1) = (I1,Σ1,∆1),
semT (Γ,LogicTranslation) = (Φ, α, β) : I1 → I2,
semT (Γ, (I2,Φ(Σ1), αΣ1(∆1)),OMS2) = (I,Σ,∆).

semM (Γ,’bridge’, OMS1, { Translation}, OMS2 ) = (I,Σ,M)

where
semM (Γ,’bridge’, OMS1) = (I1,Σ1,M1),
semM (Γ,LogicTranslation) = (Φ, α, β) : I1 → I2,
M′1 = {M ∈ ModI2(Φ(Σ1)) | βΣ1(M) ∈M1} and
semM (Γ, (I2,Φ(Σ1),M′1),OMS2) = (I,Σ,M).
The semantics of O = combination, Network is

� Inst(O) = I,

� Sig(O) = Σ, where (I,Σ, {µi}i∈|G|) is the colimit of the graph G given by the semantics
of Network,

� Th(O) = ∪i∈|G|µi(Th(Oi)), where Oi is the OMS label of the node i in G

� Mod(O) = {M ∈ Mod(Σ) | M |µi ∈ Mod(Oi), i ∈ |G|}, where Oi is the OMS label of
the node i in G.

semT (’application’, Substname, Sentence) = TODO

semM (’application’, Substname, Sentence) = TODO

sem(Γ,Σ,Translation) = ((Φ, α, β), σ)

The semantics of a translationO = renaming, LogicTranslation, SymbolMapItems
is given by

� Inst(O) = sem(LogicTranslation) : Γ.logic→ logic′

� Mor(O) = sem(Γ.{current = (lang, logic′, ser)},Φ(Σ),SymbolMapItems)
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If LogicTranslation is missing, it defaults to the identity comorphism of the current
logic.

sem(Γ,LogicTranslation) = (Φ, α, β)

(Φ, α, β) is the institution comorphism named by LogicTranslation in the heteroge-
neous logical environment.

sem(Γ,Σ,Reduction) = ((Φ, α, β), σ)

The semantics of a reduction O = hidden, LogicReduction, SymbolItems is given
by

� Inst(O) = sem(LogicReduction) : Γ.logic→ logic′

� Mor(O) = ι : Σ′ → Φ(Σ), where Σ′ = sem(Γ.{current = (lang, logic′, ser)},Φ(Σ),SymbolItems)
and ι is the inclusion morphism.

If LogicReduction is missing, it defaults to the identity morphism of the current logic
of Γ.
The semantics of a reduction O = revealed, SymbolItems is

� Inst(O) is the identity morphism on the current logic of Γ

� Mor(O) is the inclusion of sem(Γ,Σ,SymbolItems) in Σ.

sem(Γ, L,LogicReduction) = (Φ, α, β)

(Φ, α, β) is the institution morphism named by LogicReduction in the heterogeneous
logical environment.

sem(Γ,Σ,SymbolItems) = Σ′

sem(Γ,Σ,symbol-items, Symbol1, . . . , Symboln) = Σ′

where Σ′ is the smallest sub-signature of Σ containing sem(Γ,Σ,Symbol1), . . . , sem(Γ,Σ,Symboln),
if such a sub-signature exists and is otherwise unde�ned.

62 Note(62)

sem(Γ,Σ,Σ′,SymbolMapItems) = σ : Σ→ Σ′

sem(Γ,Σ,Σ′,symbol-map-items, SymbolOrMap1, . . . ,SymbolOrMapn) = σ

where σ = makeMorphismlogic(Γ.current)((s1, t1), . . . , (sn, tn)))
and (si, ti) = sem(Γ,Σ1,Σ2,SymbolOrMapi) for i = 1, . . . , n.
Applications shall implicitly map those non-logical symbols of the source OMS, for which

an explicit mapping is not given, to non-logical symbols of the same (local) name in the target
OMS, wherever this is uniquely de�ned � in detail:

Require: Os, Ot are OMS

62
Note: I need equations for one signature and for two signatures...
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Require: M ⊆ Σ(Os) × Σ(Ot) maps non-logical symbols (i.e. elements of the signature) of
Os to non-logical symbols of Ot
for all es ∈ Σ(Os) not covered by M do
ns ← localname(es)
Nt ← {localname(e)|e ∈ Σ(Ot)}
if Nt = {et} then {i.e. if there is a unique target}
M ←M ∪ {(es, et)}

end if
end for

Ensure: M completely covers Σ(Os)

The local name of a non-logical symbol is determined as follows10:

Require: e is a non-logical symbol (identi�ed by an IRI; cf. clause 9.7)
if e has a fragment f then {production ifragment in IETF/RFC 3987:2005}
return f

else
n ← the longest su�x of e that matches the Nmtoken production of XML W3C/TR
REC-xml:2008
return n

end if
63 Note(63)

sem(Γ, (Σ,∆),Extraction) = (I,Σ′,∆′)

sem(Γ,Σ,∆,’extraction’ , Qual, InterfaceSignature) = (Σ′,∆′)

where 〈Σ′,∆′〉 is the smallest depleting Σ-module [?], i.e. the smallest11 sub-theory 〈Σ′,∆′〉
of (Sig(OMS),Th(OMS)) such that the following model-theoretic inseparability holds

Th(OMS) \∆′ ≡Σ′∪Σ ∅.

This means intuitively that Th(OMS) \ ∆′ cannot be distinguished from ∅ (what Σ′ ∪ Σ
concerns) and formally that

{M |Σ′∪Σ |M ∈ Mod(Sig(OMS)),M |= Th(OMS) \∆′}
= {M |Σ′∪Σ |M ∈ Mod(Sig(OMS))}.

sem(Approximation)

sem(Γ, (Σ,∆),Filtering) = (c, I,Σ′,∆′)

10In practice, this can often have the e�ect of undoing an IRI abbreviation mechanism that was
used when writing the respective OMS (cf. clause 9.7). In general, however, functions that turn
abbreviations into IRIs are not invertible. For this reason, the implicit mapping of non-logical
symbols is speci�ed independently from IRI abbreviation mechanisms possibly employed in the
OMS.

63
Note: We need a logic-specific function that turns a symbol map into a signature morphism. Add it in
the list of assumptions about the heterogeneous logic env?

11If the smallest such sub-theory does not exist, the semantics is unde�ned. In [?], it is shown that
it does exist in usual institutions.
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sem(Γ, (Σ,∆),select, BasicOMS) = (′select′, I,Σ′,∆′)
where sem(Γ, (Σ,∆),BasicOMS) = (I,Σ′,∆′). 64 Note(64)

sem(Γ, (Σ,∆),reject, BasicOMS) = (′reject′, I,Σ′,∆′)
where sem(Γ, (Σ,∆),BasicOMS) = (I,Σ′,∆′′).

sem(Γ, (I,Σ,M,∆),ExtensionOMS) = (I,Σ′,M′,∆′)

sem(Γ, (I,Σ,M,∆), ConsStrength, ExtensionName, ExtendingOMS) = (I,Σ′,M′,∆′)
where (I,Σ′,M′,∆′) = sem(Γ, (Σ,M),ExtendingOMS).
If ConsStrength is model-conservative or implied, the semantics is only de�ned

if each model in M is the Σ-reduct of some model in M′. In case that ConsStrength
is implied, it is furthermore required that Σ = Σ′. If ConsStrength is consequence-
conservative, the semantics is only de�ned if for each Σ-sentence ϕ, M′ |= ϕ implies
M |= ϕ. If ConsStrength is definitional, the semantics is only de�ned if each model
inM is the Σ-reduct of a unique model inM′.
If ExtensionName is present, the inclusion link is labeled with this name. 65 Note(65)

sem(Γ,Σ,QualInterfaceSignature) = Σ′

sem(Γ,Σ, Qual, SymbolItems) = Σ′, where

Σ′ =

{
Σ ∩ sem(Γ,Σ,SymbolItems) if Qual = ’keep-signature’

Σ \ sem(Γ,Σ,SymbolItems) if Qual = ’remove-signature’

sem(Γ,OMSDefn) = Γ′

An OMS de�nition extends the global environment:
sem(Γ,oms-defn , OMSName , ConsStrength , OMS)
= (Γ[OMSName 7→ sem(Γ,OMS)], L)
If ConsStrength is model-conservative, the semantics is only de�ned if sem(Γ,OMS) 6=

∅. If ConsStrength is consequence-conservative, the semantics is only de�ned if
sem(Γ,OMS) is formally consistent, i.e. it does not formally imply falsity. If ConsStrength
is monomorphic, the semantics is only de�ned if sem(Γ,OMS) consist of exactly one isomor-
phism class of models. If ConsStrength is weak-definitional, the semantics is only
de�ned if sem(Γ,OMS) is a singleton. If ConsStrength is definitional, the semantics is
only de�ned if sem(Γ,OMS) is a singleton.

sem(Γ,OMSRef) = Γ(OMSRef)
66 Note(66)

sem(Γ,Σ,Symbol) = s

64
Note: TODO:check!

65
Note: This shows that we build at the level of each library a graph, where these imports will be added.
This has to be propagated in the whole section...

66
Note: what about ImportName?
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sem(Γ,Σ,Symbol) = s

where s is a logic-speci�c symbol with the name Symbol from Σ. If such symbol does not
exist, the semantics is unde�ned.

sem(Γ,Σ1,Σ2,SymbolMap)

sem(Γ,Σ1,Σ2,Symbol1,Symbol2) = (s1, s2)

where sem(Γ,Σ1,Symbol1) = s1 and sem(Γ,Σ2,Symbol2) = s2.

sem(Γ,Σ1,Σ2,SymbolOrMap) = (s, t)

sem(Γ,Σ1,Σ2,Symbol1,Symbol2) = (s1, s2)
and
sem(Γ,Σ1,Σ2,Symbol) = (s, s) where sem(Γ,Σ1,Symbol) = s.

sem(Γ,Σ,Term) = t

sem(Γ,Σ,Term) = t

where t is a Σ-term and the analysis is done in a logic-speci�c way.

sem(Γ,Σ,Sentence) = ϕ

sem(Γ,Σ,Sentence) = ϕ

where ϕ ∈ Sen(Σ) and the analysis is done in a logic-speci�c way.

sem(LolaRef)

sem(LanguageRef)

sem(SyntaxRef)

sem(LogicRef) = L

L is the institution from the heterogeneous logical environment named by LogicRef.

sem(Γ,OMSLangTrans) = ρ

sem(Γ,named-trans , OMSLangTransRef) = ρ where ρ is the institution comorphism
from the heterogeneous logical environment named by OMSLangTransRef. This is de�ned
only if the domain of ρ is the current logic of Γ.

67 Note(67)
sem(L,default-trans, LolaRef) = ρ where ρ is the unique institution comorphism

from the heterogeneous logical environment running from L to sem(LolaRef).

67
Note: We need some “algorithm” for handling LolaRefs that are actually LanguageRefs, not
LogicRefs. Suppose a translation lang1→lang2 is referenced, let e(lang) be the logic that exactly
captures the expressivity of lang. For lang1→lang2 there might be a “language-side” default transla-
tion, which does not have a corresponding “logic-side” mapping at all, or whose exactly corresponding
“logic-side” mapping is not the default for e(lang1)→e(lang2).
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11.2.4. Semantics of OMS Mappings

sem(Γ,MappingDefn) = Γ′

See equations for IntprDefn, Entailment, EquivDefn, ModuleRelDefn and AlignDefn.

sem(Γ,IntprDefn) = Γ′

sem(Γ,intrp-defn, IntprName, IntrpType,LogicTranslation, SymbolMapItems) = Γ′

where Γ′ = Γ[IntprName→ G]

and G is the graph L1
(ρ,σ)−→ L2 where

� (L1, L2) = sem(Γ,IntrpType)

� ρ = (Φ, α, β) : Inst(L1)→ Inst(L2) is the comorphism given by sem(Γ,LogicTranslation).
If LogicTranslation is missing, the default translations between the logics is se-
lected.

� sem(Γ.{current = (lang, logic′, ser)},Φ(Sig(L1)),Sig(L2),SymbolMapItems) = σ,
where Γ.current = (lang, logic, ser) and logic′ is the target logic of ρ.

The semantics is only de�ned if βSig(L1)(M2|σ) ∈ Mod(L1) for each M2 ∈ Mod(L2). If the
optional argument Conservative is model-conservative, for each modelM1 ∈ Mod(L1)
there must exist a model M2 ∈ Mod(L2) such that βSig(L1)(M2|σ) = M1. If the optional
argument Conservative is consequence-conservative, for each Sig(L1)-sentence ϕ,
ifM2 |= αSig(L1)(ϕ) thenM1 |= ϕ.

sem(Γ,refinement, IntprName, Refinement) = Γ′

where Γ′ = Γ[IntprName 7→ G] and sem(Γ,Refinement) = (G, σ) 68 Note(68)

sem(Γ,IntprType) = ((N1, I1,Σ1,M1,∆1), (N2, I2,Σ2,M2,∆2))

sem(Γ,intpr-type, OMS1, OMS2) = (L1, L2)

where

� Name(L1) = Name(OMS1) and Name(L2) = Name(OMS2),

� (Inst(Li),Sig(Li),Mod(Li),Th(Li)) = sem(Γ,OMSi), for i = 1, 2.

sem(Γ,Refinement) = (G, σ,N1, N2)

69 Note(69)
The signature of a re�nement between OMS stores the signature of the OMS being re-

�ned and the signature of the OMS after re�nement. Since the logic might change along a
re�nement step, we also store the logics. Given a re�nement signature ((I1,Σ1), (I2,Σ2)), a

68
Note: TODO: make the graph only here

69
Note: TODO: update intuition
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re�nement model is a class R = {(M1,M2) | M1 ∈ ModI1(Σ1),M2 ∈ ModI2(Σ2)} such that
R−1 is a partial function mapping ModI2(Σ2)-models to ModI1(Σ1)-models.
Similarly, for a re�nement between networks we store the graph of the network before and

after re�nement. A re�nement model in such case is a class of pairs of families of models
compatible with the two networks. By a slight abuse of notation, we will denote such models
also by R. Given two networks G1 and G2, a network morphisms σ : G1 → G2 is a functor
σG : Shape(G1) → Shape(G2) together with a natural transformation σM such that for
each node N1 in G1 labeled with (I1,Σ1,M1) such that σG(N1) is a node N2 labeled with
(I2,Σ2,M2) in G2, we have a signature morphism (ρ, σMN1

) : (I1,Σ1) → (I2,Σ2), where
ρ = (Φ, α, β) : I1 → I2 is an institution comorphism between the logics of the two nodes and
σMN1

: Φ(Σ1)→ Σ2 is a signature morphism, such that βΣ1(M2|σM
N1

) ∈M1 for eachM2 ∈M2.

Given a network morphism σ : G1 → G2 and a G2 model F , we de�ne F |σ as the family
of models {Mi}i∈Nodes(G1) such that Mi = FG(i)|σM

Ni

, for each i ∈ Nodes(G1).

sem(Γ,ref-oms, OMS) = (G, σ,N,N)

where G is a graph with just one isolated node N such that Name(N) = Name(OMS) and
the other elements of the tuple labeling L are given by sem(Γ,OMS) and σ is the identity
morphism on Sig(OMS).

sem(Γ,ref-network, Network) = (G, σ)

where sem(Γ,Network) = G and σ is the identity network morphism on G.

sem(Γ,ref-composition, Refinement1, Refinement2) = (G, σ,N1, N
′
2)

where
sem(Γ,Refinement1) = (G1, σ1, N1, N2), sem(Γ,Refinement2) = (G2, σ2, N

′
1, N

′
2) such

that the label of N2 in G1 is (I2,Σ2,M2,∆2), the label of N ′1 in G2 is (I′1,Σ′1,M′1,∆1) and
I2 = I′1, Σ2 = Σ′1, M′1 ⊆ M2, and G is the union of G1 and G2 extended with a theorem
link from N2 to N ′1 labeled with the identity on Σ2 = Σ′1 and σ = σ1;σ2.

sem(Γ,ref-composition, Refinement1, Refinement2) = ((G1, G
′
2),R′)

where
sem(Γ,Refinement1) = ((G1, G2),R1),
sem(Γ,Refinement2) = ((G′1, G

′
2),R2)

such that G2 = G′1 and R′ = {(F1, F
′
2) | ∃F2 such that (F1, F2) ∈ R1 and (F2, F

′
2) ∈ R2}.

sem(Γ,simple-ref, OMS, RefMap, Refinement) = (G, σ,N,N2)

where
semM (Γ,OMS) = (I,Σ,M,∆),
sem(Γ,Refinement) = (G′, σ2, N1, N2), such that the label of N1 in G is (I1,Σ1,M1,∆1)
sem(Γ, (I,Σ), (I1,Σ1),RefMap) = (ρ = (Φ, α, β) : I → I1, σ1 : Φ(Σ)→ Σ1),
for each M1 ∈ M1 we have that βΣ1(M1|σ1) ∈ M, σ = σ1;σ2 and G extends G′ with a new
node N labelled with (Name(OMS), I,Σ,M,∆) and with a new theorem link from N to N1

labeled with (ρ, σ1).

sem(Γ,simple-ref, Network, RefMap, Refinement) = ((G′′1 , G2),R)
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11. DOL semantics

where
semM (Γ,Network) = G1, R1 is the class of families of models compatible with G,
sem(Γ,Refinement) = ((G′1, G2),R2),
sem(Γ, G1, G2,RefMap) = σ : G1 → G′1,
for each node N1 ∈ Nodes(G1), if (I1,Σ1,M1) is the label of N1 in G1,
(I2,Σ2,M2) is the label of N2 = σG(N1) in G2

and ((Φ, α, β) : I1 → I2, φ : Φ(Σ1)→ Σ2) is σMN1
,

then M1 must include {βΣ1(M2|φ) | M2 ∈ M2}, and this class of models becomes the new
label of N1 in G′′1 and
R pairs each family of models F compatible with G2 with the F |σ.

sem(Γ, (I1,Σ1), (I2,Σ2),RefMap) = (ρ, σ)

sem(Γ, (I1,Σ1), (I2,Σ2),refmap-oms, LogicTranslation, SymbolMapItems) = ((Φ, α, β), σ)

where
sem(Γ,LogicTranslation) = (Φ, α, β) : I′1 → I′2 such that I′1 = I1 and I′2 = I2

and sem(Γ.current = (lang, logic′, ser),Φ(Σ1),Σ2,SymbolMapItems) = σ : Φ(Σ1) → Σ2

where Γ.current = (lang, logic, ser) and logic′ is the target logic of (Φ, α, β).

sem(Γ, G1, G2,RefMap) = σ : G1 → G2

sem(Γ, G1, G2,refmap-network,NodeMap1, . . . ,NodeMapn) = σ

where
sem(Γ, G1, G2,NodeMap1) = (OMSName1

1,OMSName
1
2, ρ1, σ1), . . .

sem(Γ, G1, G2,NodeMapn) = (OMSNamen1 ,OMSName
n
2 , ρn, σn) and

σG(OMSNamei1) = OMSNamei2 and σMOMSNamei1
= (ρi, σi) for each i = 1, . . . , n. The map is

required to be total on the nodes of G1.

sem(Γ, G1, G2,NodeMap) = (OMSName1,OMSName2, ρ, σ)

sem(Γ, G1, G2,node-map, OMSName1, OMSName2 , LogicTranslation , SymbolMapItems) =
(OMSName1,OMSName2, ρ, σ)
where (I1,Σ1,M1) is the label of OMSName1 in G1, (I2,Σ2,M2) is the label of OMSName2

in G2, sem(Γ,LogicTranslation) = ρ : I1 → I2, ρ = (Φ, α, β),
sem(Γ.current = (lang, logic′, ser),Φ(Σ1),Σ2,SymbolMapItems) = σ : Φ(Σ1)→ Σ2. where
Γ.current = (lang, logic, ser) and logic′ is the target logic of (Φ, α, β).

sem(Γ,Entailment) = Γ′

sem(Γ,entailment, EntailmentName, EntailmentType) = Γ′

where Γ′ = Γ[EntailmentName 7→ sem(Γ,EntailmentType)].

sem(Γ,EntailmentType) = G
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11. DOL semantics

sem(Γ,oms-oms-entailment, OMS1, OMS2) = L2
id→ L1

where Name(L1) = Name(OMS1), Name(L2) = Name(OMS2),
(Inst(Li),Sig(Li),Mod(Li),Th(Li)) = sem(Γ,OMSi) for i = 1, 2 such that Sig(L1) = Sig(L2)
and Mod(O1) |= Th(O2) and id is the identity morphism on Sig(L1).
sem(Γ,network-oms-entailment, Network , OMSName, OMS) = G

where sem(Γ,Network) = G′ such that ′G contains a node labeled with (Name(OMSName), I,Σ,M1,∆1),
sem(Γ,OMS) = (I,Σ,M2,∆2) and M2 ⊆ M1. Then G extends G' with a new node whose
label has the name Name(OMS) and the other components given by sem(Γ,OMS) and with a
new theorem link from this new node to the node Name(OMSName), labeled with the identity
morphism on Σ.

sem(Γ,network-network-entailment, Network1 ,Network2, NodeMap) = G

where sem(Γ,Network1) = G1, sem(Γ,Network2) = G2, sem(Γ,NodeMap) = σ such that
σ is a bijective map between the nodes of G1 and G2 and moreover the nodes related by σ
have the same signatures and for each such pair of nodes (N1, N2 = σ(N1)) we have that
Mod(N1) |= Th(N2). Then G extends the union of G1 and G2 for each pair (N1, σ(N1)) with
a theorem link from σ(N1) to N1 labelled with the identity on Sig(N1).

sem(Γ,EquivDefn) = Γ′

sem(Γ,’equiv-defn’ , EquivName , ( ’equiv-type’ O1 O2 ) O3) = Γ′

where Γ′ = Γ[EquivName 7→ G] where G is the graph

(Name(O1), Inst(O1),Sig(O1),Mod(O1),Th(O1))
ι1→

(Name(O3), Inst(O3),Sig(Sig(O1)∪Sig(O2),∅)(O3),Mod(Sig(O1)∪Sig(O2),∅)(O3),Th(Sig(O1)∪Sig(O2),∅)(O3))
ι2← (Name(O2), Inst(O2), Sign(O2),Mod(O2),Th(O2)) where ιi are inclusions and we have
that Inst(O1) = Inst(O2) = Inst(O3) and for each i = 1, 2 and each model Mi ∈ Mod(Oi)
there exists a unique model M ∈ Mod(Sign(O1)∪Sign(O2),∅)(O3) such that M |Sign(Oi) = Mi.

sem(Γ,ModuleRelDefn) = Γ′

70 Note(70)

sem(Γ,module-defn, ModuleName, Conservative, ModuleType, InterfaceSignature) = Γ′

where Γ′ = Γ[ModuleName 7→ G] andG is the graph (O2, Inst(O2), Sign(O2),Mod(O2),Th(O2))
ι→ (O1, Inst(O1), Sign(O1),Mod(O1),Th(O1)), with ι being the inclusion, when Σ ⊆ Sign(O2) ⊆
Sign(O1) and if c =%mcons and for each M ∈ Mod(O2) there is a modelM ′ ∈ Mod(O1) such
that M ′|Σ = M |Σ, or if c =%ccons and for each ϕ ∈ Sen(Σ), O1 |= ϕ implies O2 |= ϕ. 71 Note(71)

sem(Γ,AlignDefn) = Γ′

70
Note: in the manifesto this is called a conservative extension

71
Note: TODO: finish this
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11. DOL semantics

sem(Γ,align-defn, AlignName, AlignCard, AlignType, AlignSem, Corresps) =
Γ′

where sem(Γ,AlignType) = (L1, L2) and
Γ′ = Γ[AlignType 7→ sem(Γ, (L1, L2),AlignCard, AlignSem, Corresps)]

sem(Γ,AlignType) = (L1, L2)

sem(Γ,align-type, OMS1, OMS2) = (L1, L2)

where L1 is a node label whose name is Name(OMS1) and whose other components are
given by sem(Γ,OMS1) and similarly, L2 is a node label whose name is Name(OMS2) and
whose other components are given by sem(Γ,OMS2).

sem(Γ, L1, L2,AlignCard, AlignSem, Corresps) = G

sem(Γ, L1, L2,AlignCard, AlignSem, C1, . . . , Cn) = G

where
L′1 = sem(Γ, L1,AlignSem),
L′2 = sem(Γ, L2,AlignSem),
G = sem(Γ, L′1, L

′
2,AlignCard, AlignSem, C1, . . . , Cn).

sem(Γ, L1,AlignSem) = L′1

sem(Γ, L1,AlignSem) =

{
L1 if AlignSem = global-domain

relativizelogic(Γ.current)(L1) otherwise

where the relativisation procedure is logic-speci�c.

sem(Γ, L1, L2AlignCard, AlignSem, C1, . . . , Cn) = G

sem(Γ, L1, L2,AlignCard, AlignSem, C1, . . . , Cn) = G
where

if at least one of the correspondences C1, . . . , Cn has a con�dence value di�erent than 1, then
the semantics of the alignment is not de�ned, and the alignment is ill-formed if the alignment
mapping does not have the arities given by AlignCard, otherwise G is a W-shaped graph
as below

L1 LB L2

Ls

ι1

``

σ1

==

Lt

ι2

>>
σ2

aa

where LB , Ls and Lt are built in a logic-speci�c way from the correspondences C1, . . . , Cn
taking into account AlignSem. [10] illustrates how this construction works in the case of
OWL, in a way that can be generalized to other logics.
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11. DOL semantics

11.2.5. Semantics of queries

sem(QueryRelatedDefn)

sem(QueryDefn)

sem(SubstDefn)

sem(ResultDefn)

11.3. OMS language translations
The concept of OMS language translation has been formalized as institution comorphism.
TODO: Provide some examples
special cases to be described
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A. Annex (normative): LoLa, an RDF
vocabulary for describing Logics
and OMS Languages conforming
with DOL

This annex speci�es LoLa, an RDF vocabulary for describing Logics and OMS Languages
conforming with DOL, as well as serializations and translations, when they are entered into
the registry stipulated by chapter 2. The normative subset of LoLa is given as an RDF
Schema vocabulary (W3C/TR REC-rdf-schema:2014) having the namespace IRI http://
www.omg.org/spec/DOL/0.8/rdf#.1. For a full treatment of the background and design
considerations of LoLa please see [36].
The tables in this annex list the classes and properties of LoLa. All classes and properties

are assumed to be in the LoLa namespace unless stated otherwise.
Table A.1 lists the classes of LoLa. Each row of the table translates into the following RDF

triples (given in Turtle serialization [25]):

_:class rdf:type rdfs:Class ;
rdfs:subClassOf _:superclass ;
rdfs:comment "documentation" .

Table A.2 lists the properties of the RDF vocabulary for describing OMS languages. Each
row of the table translates into the following RDF triples (given in Turtle serialization):

_:property rdf:type rdf:Property ;
rdfs:domain _:domain ;
rdfs:range _:range ;
rdfs:comment "documentation" .

72 Note(72)

1The full version of LoLa is currently maintained as an OWL ontology and, prospectively, as
an OMS library implemented in DOL, at https://github.com/ontohub/OOR_Ontohub_API/
blob/master/lola/ontology/; a subset serialized in RDF will be available from the namespace
IRI (temporarily from http://purl.net/dol/1.0/rdf#).

72
Note: Q-AUT: we need to define “sublogic” as a term – how? I guess that would include the notion of
an “OWL profile”
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A. LoLa RDF vocabulary

Common Logic

SROIQDL-LiteR

CLIF

XCL

Manchester Syntax

OWL 2 XML

RDF / XML

Turtle

OWL 2 DL

RDF

RDFS

Common Logic

RDFS

RDF

OWL 2 QL

OWL 2 RL

OWL 2 EL

DL-RL

EL++

Serializations Ontology Languages Logics

supports serialization sublanguage of

induced translation exact logical expressivity

translatable to

sublogic of

Figure A.1.: Subset of the OntoIOp registry, shown as an RDF graph
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A. LoLa RDF vocabulary

Table A.1.: LoLa Classes

Class documentation Superclass

Language an OMS language
Logic a logic that de�nes the semantics of an

OMS language
Serialization a serialization of an OMS language
Mapping a generic mapping between logics or lan-

guages
LanguageMapping a mapping between two languages Mapping
LogicMapping a mapping between two logics Mapping
Translation a translation between logics or, induced,

between languages
Mapping

Reduction a reduction between logics or, induced, be-
tween languages

Mapping

DefaultMapping a default mapping Mapping
WeaklyExactMapping a default mapping Mapping
ExactMapping a default mapping WeaklyExactMapping
FaithfulMapping a default mapping Mapping
ModelExpansiveMapping a default mapping FaithfulMapping
ModelBijectiveMapping a default mapping ModelExpansiveMapping
Embedding a default mapping ModelBijectiveMapping,

LogicMapping, Trans-
lation

PlainMapping a default mapping Mapping
SimpleTheoroidalMappinga default mapping Mapping
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A. LoLa RDF vocabulary

Table A.2.: LoLa Properties

Property domain range
documentation

subLogicOf Logic Logic
The subject is a sublogic of the object

supportsLogic Language Logic
The subject OMS language has a semantics speci�ed in terms of the object logic.

speci�esSemanticsOf Logic Language
The subject logic is used to specify the semantics of the object OMS language; inverse of
supportsLogic.

supportsSerialization Language Serialization
OMS in the subject OMS language can be serialized in the object serialization. Note that
the serialization should be as speci�c as possible, i.e. one should not say that �OWL can be
serialized in XML� and �Common Logic can be serialized in XML�, but instead �OWL can be
serialized in OWL/XML� and �Common Logic can be serialized in XCL�, taking into account
that OWL/XML and XCL are two di�erent XML languages.

serializes Serialization Language
The subject logic is used to specify the semantics of the object OMS language; inverse of
supportsSerialization.
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B. Annex (normative): Conformance
of OWL 2 DL with DOL

The semantic conformance of OWL 2 DL (as speci�ed in W3C/TR REC-owl2-syntax:2009)
with DOL is established in [44].
The OWL/XML serialization satis�es the criteria for XML conformance. The mapping

of OWL 2 DL to RDF graphs satis�es the criteria for RDF conformance73 . The OWL 2 Note(73)
Manchester syntax satis�es the criteria for text conformance. 74

Note(74)
OWL can be formalized as an institution as follows:

De�nition 12 OWL 2 DL. OWL 2 DL is the description logic (DL) based fragment of the
web ontology language OWL. We start with the simple description logic ALC, and then proceed
to the more complex description logic SROIQ which is underlying OWL 2 DL. Signatures
of the description logic ALC consist of a set A of atomic concepts, a set R of roles and
a set I of individual constants. Signature morphisms are tuples of functions, one for each
signature component. Models are �rst-order structures I = (∆I , .I) with universe ∆I that
interpret concepts as unary and roles as binary predicates (using .I). I1 ≤ I2 if ∆I1 = ∆I2

and all concepts and roles of I1 are subconcepts and subroles of those in I2. Sentences are
subsumption relations C1 v C2 between concepts, where concepts follow the grammar75 Note(75)

C ::= A |> |⊥ |C1 t C2 |C1 u C2 | ¬C | ∀R.C | ∃R.C

These kind of sentences are also called TBox sentences. Sentences can also be ABox sentences,
which are membership assertions of individuals in concepts (written a : C for a ∈ I) or pairs
of individuals in roles (written R(a, b) for a, b ∈ I, R ∈ R). Satisfaction is the standard
satisfaction of description logics.

The logic SROIQ [29], which is the logical core of the Web Ontology Language OWL 2
DL1, extends ALC with the following constructs: (i) complex role inclusions such as R◦S v S
as well as simple role hierarchies such as R v S, assertions for symmetric, transitive, re�ex-
ive, asymmetric and disjoint roles (called RBox sentences, denoted by SR), as well as the
construct ∃R.Self (collecting the set of `R-re�exive points'); (ii) nominals, i.e. concepts of the
form {a}, where a ∈ I (denoted by O); (iii) inverse roles (denoted by I); quali�ed and un-
quali�ed number restrictions (Q). For details on the rather complex grammatical restrictions
for SROIQ (e.g. regular role inclusions, simple roles) compare [29].

OWL pro�les are syntactic restrictions of OWL 2 DL that support speci�c modeling and rea-
soning tasks, and which are accordingly based on DLs with appropriate computational proper-
ties. Speci�cally, OWL 2 EL is designed for ontologies containing large numbers of concepts or
relations, OWL 2 QL to support query answering over large amounts of data, and OWL 2 RL
to support scalable reasoning using rule languages (EL, QL, and RL for short) .

73
Note: This is not exactly true, as some things, e.g. imports, cannot be identified.

74
Note: also need conformance propositional logic; use PL “profile” of the CASL “IFIP standard”

75
Note: Q-AUT: This grammar should also be adapted to ISO EBNF.
1See also http://www.w3.org/TR/owl2-overview/
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B. Annex (normative): Conformance of OWL 2 DL with DOL

We sketch the logic EL which is underlying the EL pro�le.2 EL is a syntactic restriction of
ALC to existential restriction, concept intersection, and the top concept:

C ::= A |> |C1 u C2 | ∃R.C

Note that EL does not have disjunction or negation, and is therefore a sub-Boolean logic.

Remark: strictly speaking, the institution de�ned above is OWL 2 DL without restrictions
in the sense of [48]. The reason is that in an institution, the sentences can be used for arbitary
formation of theories. This is related to the presence of DOL's union operator on OMS. OWL
2 DL's speci�c restrictions on theory formation can be modeled inside this institution, as a
constraint on OMS. This constraint is generally not preserved under unions or extensions.
DOL's multi-logic capability allows the clean distinction between ordinary OWL 2 DL and
OWL 2 DL without restrictions.

2To be exact, EL adds various `harmless' expressive means and syntactic sugar to EL resulting in
the DL EL ++.
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C. Annex (normative): Conformance
of Common Logic with DOL

The semantic conformance of Common Logic (as speci�ed in ISO/IEC 24707:2007) with DOL
is established in [44].
The XCF dialect of Common Logic has a serialization that satis�es the criteria for XML

conformance. The CLIF dialect of Common Logic has a serialization that satis�es the criteria
for text conformance.
Common Logic can be de�ned as an institution as follows:

De�nition 13 Common Logic. A common logic signature Σ (called vocabulary in Com-
mon Logic terminology) consists of a set of names, with a subset called the set of discourse
names, and a set of sequence markers. An signature morphism maps names and sequence
markers separately, subject to the requirement that a name is a discourse name in the smaller
signature if and only if it is one in the larger signature. A Σ-model I = (UR,UD , rel , fun, int)
consists of a set UR, the universe of reference, with a non-empty subset UD ⊆ UR, the uni-
verse of discourse, and four mappings:

� rel from UR to subsets of UD∗ = {< x1, . . . , xn > |x1, . . . , xn ∈ UD} (i.e., the set of
�nite sequences of elements of UD);

� fun from UR to total functions from UD∗ into UD;

� int from names in Σ to UR, such that int(v) is in UD if and only if v is a discourse
name;

� seq from sequence markers in Σ to UD∗.

A Σ-sentence is a �rst-order sentence, where predications and function applications are writ-
ten in a higher-order like syntax: t(s). Here, t is an arbitrary term, and s is a sequence
term, which can be a sequence of terms t1 . . . tn, or a sequence marker. A predication t(s)
is interpreted by evaluating the term t, mapping it to a relation using rel , and then asking
whether the sequence given by the interpretation s is in this relation. Similarly, a function
application t(s) is interpreted using fun. Otherwise, interpretation of terms and formulae is
as in �rst-order logic. A further di�erence to �rst-order logic is the presence of sequence terms
(namely sequence markers and juxtapositions of terms), which denote sequences in UD∗, with
term juxtaposition interpreted by sequence concatenation. Note that sequences are essentially
a non-�rst-order feature that can be expressed in second-order logic.

Model reducts are de�ned in the following way: Given a signature inclusion76 Σ′ ≤ Σ and Note(76)
a Σ-model I = (UR,UD , rel , fun, int), I|Σ′ = (UR′,UD , rel ′, fun ′, int ′) is de�ned by

� UR′ is the restriction of UR to those elements satisfying the following conditions:

1. they are not in the universe of discourse UD;

2. they are the interpretation (according to int) of a non-discourse name in Σ;

76
Note: generalize to morphisms
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C. Annex (normative): Conformance of Common Logic with DOL

3. they are not the interpretation (according to int) of a non-discourse name in Σ′.

� rel ′ is rel restricted to UR′;

� fun ′ is fun restricted to UR′;

� int ′ is int restricted to Σ′.

Note that with this notion of reduct, extensions commonly understood as de�nitions in
segregated dialects of Common Logic are indeed both de�nitional and conservative extensions.

77 Note(77)
We call the restriction of CL to sentence without sequence markers CL −.

77
Note: Ordering on models! Universes agree, fun1(x) = fun2(x), rel1(x) ⊆ rel2(x), int1(n) =
int2(n)
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D. Annex (normative): Conformance
of RDF and RDF Schema with DOL

The semantic conformance of RDF Schema (as speci�ed in W3C/TR REC-rdf-schema:2014)
with DOL is established in [44].
The way of representing RDFS ontologies as RDF graphs satis�es the criteria for RDF

conformance.

De�nition 14 (RDF and RDFS) Following [39], we de�ne the institutions for the Resource
Description Framework (RDF) and RDF Schema (also known as RDFS), respectively. These
are based on a logic called bare RDF (SimpleRDF), which consists of triples only (without any
prede�ned resources).

A signature Rs in SimpleRDF is a set of resource references. For sub, pred, obj ∈ Rs, a
triple of the form (sub, pred, obj) is a sentence in SimpleRDF, where sub, pred, obj represent
subject name, predicate name, object name, respectively. An Rs-modelM = 〈Rm, Pm, Sm, EXTm〉
consists of a set Rm of resources, a set Pm ⊆ Rm of predicates, a mapping function Sm :
Rs → Rm, and an extension function EXTm : Pm → P(Rm × Rm) mapping every predicate
to a set of pairs of resources. Satisfaction is de�ned as follows:

M |=Rs (sub, pred, obj)⇔ (Sm(sub), (Sm(obj)) ∈ EXTm(Sm(pred)).

Both RDF and RDFS are built on top of SimpleRDF by �xing a certain standard vocabulary
both as part of each signature and in the models.78 Actually, the standard vocabulary is given Note(78)
by a certain theory. In case of RDF, it contains e.g. resources rdf:type and rdf:Property
and rdf:subject, and sentences like, e.g. (rdf:type,rdf:type, rdf:Property), and
(rdf:subject,rdf:type, rdf:Property).

In the models, the standard vocabulary is interpreted with a �xed model. Moreover, for each
RDF-modelM = 〈Rm, Pm, Sm, EXTm〉, if p ∈ Pm, then it must hold (p, Sm(rdf:Property)) ∈
EXTm(rdf:type). For RDFS, similar conditions are formulated (here, for example also the
subclass relation is �xed).

In the case of RDFS, the standard vocabulary contains more elements, like rdfs:domain,
rdfs:range, rdfs:Resource, rdfs:Literal, rdfs:Datatype, rdfs:Class, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:member, rdfs:Container, rdfs:ContainerMembershipProperty.

There is also OWL Full, an extension of RDFS with resources such as owl:Thing and
owl:oneOf, tailored towards the representation of OWL [24].

78
Note: Refer to the RDF standard here.
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E. Annex (informative): Conformance
of UML class and object diagrams
with DOL

This informative annex demonstrates conformance of UML class and object diagrams with
DOL by de�ning an institution for both. We concentrate on the static aspects of class
diagrams; that is, change of state is ignored. This means that all operations are query
operations.
The institution of UML class and object diagrams is de�ned using a translation of UML

class diagrams to Common Logic, following the fUML speci�cation and [49].

E.1. Preliminaries
From the fUML speci�cation, section 10.3.1, we inherit the axioms for primitive types:
Booleans, numbers, sequences and strings. These axiomatize (among others) predicates cor-
responding to primitive types, e.g. buml:Boolean, form:Number, form:NaturalNumber,
buml:Integer, form:Sequence, form:Character, and buml:String.
We additionally need to axiomatize a number of predicates in Common Logic (note that

enumerations are not axiomatized in fUML):

logic CLIF

oms uml-enumerations =
(distinct) // the empty sequence is distinct
(distinct x) // singleton sequences are distinct
(iff (distinct x y ...) // recursion for length > 1

(and (not (= x y)) // the first two elements must be different
(distinct x ...) // and each of them distinct
(distinct y ...) )) // to the rest

(iff (exhaustive c ...) (forall (x) (if (c x) (oneof x ...))))
// does ... exhaust the extension of c?

(not (oneof x)) // is x among the remaining arguments?
(iff (oneof x y ...) (or (= x y) (oneof x ...)))
(iff (enumeration c ...) (and (exhaustive c ...) (distinct ...)))

// c is an enumeration type with values ...
end

oms pairs =
(forall (x y) (= (form:first (form:pair x y)) x))
(forall (x y) (= (form:second (form:pair x y)) y))

94



E. Annex (informative): Conformance of UML class and object diagrams with DOL

(forall (x y) (form:Pair (form:pair x y)))
(forall (p) (if (form:Pair p)

(= (form:pair (form:first p) (form:second p)) p)))
end

oms sequences =
fuml:sequences.clif and pairs
then

// fuml:sequence - membership of an element in a sequence
(forall (x s)

(if (form:sequence-member x s)
(form:Sequence s)))

(forall (x s)
(iff (form:sequence-member x s)

(exists (pt)
(and (form:in-sequence s pt)

(form:in-position pt x)) )))

// selection of elements
(forall (o) (= (form:select1 o form:empty-sequence) form:empty-sequence))
(forall (o y s)

(= (form:select1 o (form:sequence-insert (form:pair o y) s))
(form:sequence-insert y (form:select1 o s))))

(forall (o x y s)
(if (not (= x o))

(= (form:select1 o (form:sequence-insert (form:pair x y) s))
(form:select1 o s))))

(forall (o) (= (form:select2 o form:empty-sequence) form:empty-sequence))
(forall (o x s)

(= (form:select2 o (form:sequence-insert (form:pair x o) s))
(form:sequence-insert x (form:select2 o s))))

(forall (o x y s)
(if (not (= y o))

(= (form:select2 o (form:sequence-insert (form:pair x y) s))
(form:select2 o s))))

(forall (i s)
(= (form:n-select form:empty-sequence i s)

form:empty-sequence))
(forall (a i s t x)

(if (= (insert-i i x t) s)
(= (form:n-select (form:sequence-insert s a) i t)

(form:sequence-insert s (form:n-select a i t)))))
(forall (a i s t)

(if (not (exists (x) (= (insert-i i x t) s)))
(= (form:n-select (form:sequence-insert s a) i t)

(form:n-select a i t))))
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// insert element at i-th position
(forall (x s)

(= (insert-i form:0 x s) (form:sequence-insert x s)))
(forall (i j x y s)

(if (form:add-one i j)
(= (insert-i j x (form:sequence-insert y s))

(form:sequence-insert y (insert-i i x s)))))
end

oms sequences-insert =
sequences then
// insertion of elements
(forall (x s1 s2)
// inserting an element means...
(if (= (form:sequence-insert x s1) s2)

(and (form:Sequence s1)
(form:Sequence s2)
// the new element is at the first position
(form:in-position-count s2 form:1 x)
// and all other elements are shifted by one
(forall (n1 n2 y)
(if (form:add-one n1 n2)

(iff (form:in-position-count s1 n1 y)
(form:in-position-count s2 n2 y)))))))

// synonym
(forall (s) (= (form:sequence-length s) (form:sequence-size s)))

end

oms ordered-sets =
sequences with
form:Sequence |-> form:Ordered-Set,
form:empty-sequence |-> form:empty-ordered-set,
form:sequence-length |-> form:ordered-set-size,
form:same-sequence |-> form:same-ordered-set,
form:sequence-member |-> form:ordered-set-member,
form:in-sequence |-> form:in-ordered-set,
form:before-in-sequence |-> form:before-in-ordered-set,
form:position-count |-> form:ordered-set-position-count
form:in-position-count |-> form:in-ordered-set-position-count

then
//Different positions contain different elements

(forall (s x1 x2 n1 n2)
(if (and (form:in-ordered-set-position-count s n1 x1)

(form:in-ordered-set-position-count s n2 x2)
(= x1 x2))

(= n1 n2)))
// insertion of elements
(forall (x s1 s2)

(if (= (form:ordered-set-insert x s1) s2)
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(and (form:Ordererd-Set s1)
(form:Ordererd-Set s2)

// no element can be inserted twice
(forall (x s)
(if (from:ordered-set-member x s)

(= (form:ordered-set-insert x s) s)))
// inserting a new element
(forall (x s)
(if (not (from:ordered-set-member x s1))

(exists (s2)
(and (= (form:ordered-set-insert x s1) s2)

// the new element is at the first position
(form:in-ordered-set-position-count s2 form:1 x)
// and all other elements are shifted by one
(forall (n1 n2 y)
(if (form:add-one n1 n2)

(iff (form:in-ordered-set-position-count s1 n1 y)
(form:in-ordered-set-position-count s2 n2 y)))))))

end

oms sets =
//An empty set has no members.
(forall (s)

(if (form:empty-set s)
(form:Set s)))

(forall (s)
(if (form:Set s)

(iff (form:empty-set s)
(not (exists (x)

(form:set-member x s))))))
//Size of sets
(forall (s n)

(if (form:set-size s n)
(and (form:Set s)

(buml:UnlimitedNatural n))))
(= (form:set-size form:empty-set) form:0)
(forall (x s)

(if (not (form:set-member x s))
(exists (n)
(and (form:add-one (form:set-size s) n)

(= (form:set-size (form:set-insert x s))
n)))))

//The same-set relation is true for sets that have the same members.
// but: why not replace same-set with = ?
(forall (s1 s2)

(if (form:same-set s1 s2)
(and (form:Set s1)

(form:Set s2))))
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(forall (s1 s2)
(iff (form:same-set s1 s2)

(forall (x)
(iff (form:set-member x s1)

(form:set-member x s2)))))
//Insertion of elements into sets and set membership
(forall (x s)

(if (form:Set s)
(form:Set (form:set-insert x s))))

(forall (x y s)
(iff (form:set-member x (form:set-insert y s))

(or (= x y)
(form:set-member x s))))

end

oms bags =
//An empty bag has no members.
(forall (s)

(if (form:empty-bag s)
(form:Bag s)))

(forall (s)
(if (form:Bag s)

(iff (form:empty-bag s)
(not (exists (x)

(form:bag-member x s))))))
//Size of bags
(forall (s n)

(if (form:bag-size s n)
(and (form:Bag s)

(buml:UnlimitedNatural n))))
(= (form:bag-size form:empty-bag) form:0)
(forall (x s)

(exists (n)
(and (form:add-one (form:bag-size s) n)

(= (form:bag-size (form:bag-insert x s))
n))))

//The same-bag relation is true for bags that have the same members.
(forall (s1 s2)

(if (form:same-bag s1 s2)
(and (form:Bag s1)

(form:Bag s2))))
(forall (s1 s2)

(iff (form:same-bag s1 s2)
(forall (x)

(iff (form:bag-member-count x s1)
(form:bag-member-count x s2)))))

//Insertion of elements into bags and bag membership
(forall (x s)
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(if (form:Bag s)
(form:Bag (form:bag-insert x s))))

(forall (x y s)
(iff (form:bag-member x (form:bag-insert y s))

(or (= x y)
(form:bag-member x s))))

//Member count
(forall (x s)

(if (form:Bag s)
(buml:UnlimitedNatural (form:bag-member-count x s))))

(= (form:bag-member-count form:empty-bag) form:0)
(forall (x s)

(exists (n)
(and (form:add-one (form:bag-member-count x s) n)

(= (form:bag-member-count x (form:bag-insert x s))
n))))

(forall (x y s)
(if (not (= x y))

(= (form:bag-member-count x (form:bag-insert y s))
(form:bag-member-count x s))))

end

oms collection-types =
sequences-insert and ordered-sets and sets and bags

then
//bag to set
(forall (b)

(if (form:Bag s)
(form:Set (form:bag2set b))))

(= (form:bag2set form:empty-bag) form:empty-set)
(forall (x b)

(if (form:Bag b)
(= (form:bag2set (form:set-insert x b))

(form:bag-insert x (form:bag2set b)))))

//sequence to ordered set
(forall (s)

(if (form:Sequence s)
(form:Ordered-Set (form:seq2ordset s))))

(= (form:seq2ordset form:empty-sequence) form:empty-ordered-set)
(forall (x s)

(if (form:Sequence s)
(= (form:seq2ordset (form:sequence-insert x s))

(form:ordered-set-insert x (form:seq2ordset s)))))

//sequence to bag
(forall (s)

(if (form:Sequence s)
(form:Bag (form:seq2bag s))))
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(= (form:seq2bag form:empty-sequence) form:empty-bag)
(forall (x s)

(if (form:Sequence s)
(= (form:seq2bag (form:sequence-insert x s))

(form:bag-insert x (form:seq2bag s)))))

//ordered-set to set
(forall (b)

(if (form:Ordered-Set s)
(form:Set (form:ordset2set b))))

(= (form:ordset2set form:empty-ordered-set) form:empty-set)
(forall (x b)

(if (form:Ordered-Set b)
(= (form:ordset2set (form:set-insert x b))

(form:ordered-set-insert x (form:ordset2set b)))))

//sequence to set
(forall (s)

(if (form:Sequence s)
(form:Set (form:seq2set s))))

(forall (s) (= (form:seq2set s) (form:ordset2set (form:seq2ordset s))))

// leq
(forall (x y)

(iff (buml:leq x y)
(or (= x y)

(buml:less-than x y))))
end

oms uml-cd-preliminaries =
uml-enumerations and collection-types and pairs

end

Using this infrastructure, we obtain an institution for UML class diagrams as described in
the following sections.

E.2. Signatures

Class/data type hierarchies. A class/data type hierarchy (C,≤C) is given by a partial or-
der where the set C contains the class/data type names, which are closed w.r.t. the built-in data
types Boolean, UnlimitedNatural, Integer, Real, and String, i.e., {Boolean,UnlimitedNatural, Integer,Real,String} ⊆
C;79 and the partial ordering relation ≤C represents a generalisation relation on C, where we Note(79)
say that c1 is a sub-class/data type of c2 if c1 ≤C c2.
A class/data type hierarchy map γ : (C,≤C) → (D,≤D) is given by a monotone map

79
Note: what about enumeration types? Should we assume that some classifiers are marked as enu-
meration types and equipped with their set of constants?
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from (C,≤C) to (D,≤D), i.e., γ(c) ≤D γ(c′) if c ≤C c′, such that γ(c) = c for all c ∈
{Boolean,UnlimitedNatural, Integer,Real,String}.

We use the collection type constructors OrderedSet, Set, Sequence, and Bag for representing
the meta-attributes �ordered� and �unique� of MultiplicityElement according to the following
table:1

ordered not ordered

unique OrderedSet Set

not unique Sequence Bag

The default is �not ordered� and �unique�.2

For a class/data type c ∈ C of a class/data type-hierarchy (C,≤C) and a collection type
constructor τ ∈ {OrderedSet, Set, Sequence,Bag}, we write τ [c] for the induced collection type.

Let (C,≤C) be a class/data type hierarchy.

� An attribute declaration3 over (C,≤C) is of the form c.p : τ [c′] with c, c′ ∈ C, τ a collection
type constructor, and p an attribute name.

� A query operation declaration over (C,≤C) is of the form c.o(x1 : τ1[c1], . . . , xr : τn[cr]) :
τ [c′] with c, c1, . . . , cr, c

′ ∈ C, τ a collection type constructor, and o an operation name.80 Note(80)

� An association declaration over (C,≤C) is of the form a(p1 : τ1[c1], . . . , pr : τn[cr]) with
r ≥ 2, c1, . . . , cr ∈ C, τ1, . . . , τr classi�er annotations, a an association name, and p1, . . . , pr
member end names.4 An association declaration a = a(p1 : τ1[c1], . . . , pr : τr[cr]) yields
the property declarations a.pi : τi[ci] for 1 ≤ i ≤ r. An association declaration is binary if
r = 2.5

� A composition declaration over (C,≤C) is of the form m(p1 : Set[c1], �p2 : τ2[c2]) with
c1, c2 ∈ C, τ2 a collection type constructor, m a composition name, and p1, p2 member end
names.6 A composition declaration m = m(p1 : Set[c1], �p2 : τ2[c2]) yields the property
declarations m.p1 : Set[c1] and m.p2 : τ2[c2].

Class/data type nets (Signatures). A class/data type net Σ = ((C,≤C), P,O,A,M)
comprises a class/data type hierarchy (C,≤C) and a set P of attribute declarations, a set O
of operation declarations, a set A of association declarations over (C,≤C), and a set M of
composition declarations, such that the following properties are satis�ed:

1Cf. UML Superstructure Speci�cation 2.4.1, p. 128.
2UML Superstructure Speci�cation 2.4.1, p. 96.
3We separate attributes from association member ends due to their di�erent uses. In UML, both
are of class Property.

80
Note: are the xi called parameter names?
4The member ends are ordered according to the UML Superstructure Speci�cation 2.4.1, p. 29;
hence we use a tuple-like notation.

5Only binary association may show member ends that are properties not owned by the association
(UML Superstructure Speci�cation 2.4.1, p. 37). The propery declarations induced by a more
than binary association result in a query operation.

6In UML, each Property may have AggregationKind composite. However, such an aggregation kind
has no semantic meaning when the property is not a member end of an association: the UML
Superstructure Speci�cation 2.4.1 does not mention the aggregation kind in the description of
the semantics of Property. Moreover, composite properties, i.e., properties with aggregation kind
composite can only be member ends of binary associations (UML Superstructure Speci�cation
2.4.1, p. 37) and their multiplicity must not exceed one (UML Superstructure Speci�cation 2.4.1,
p. 126). We thus separate composition declarations from general association declarations.
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� attribute names are unique along the generalisation relation: if c1.p1 : τ1[c′1] and c2.p2 :
τ2[c′2] are di�erent property declararations in P and c1 ≤C c2, then p1 6= p2;

� association and composition names are unique: if d1 and d2 are the names of two di�erent
association or composition declarations in M ∪A, then d1 6= d2;

� member end names are unique: if p1, . . . , pr are the member end names of an association
declaration in A or a composition declaration in M , then pi 6= pj for 1 ≤ i 6= j ≤ r.

� the type of a member end7 owned by a class/data type coincides with its declarations as
attribute: We say that a property declaration a.pi : τi[ci] yielded by a binary association
a = a(p1 : τ1[c1], p2 : τ2[c2]) is owned by c0 ∈ C if c3−i ≤C c0 and there is an attribute
declaration c0.pi : τi[ci] ∈ P ; and similarly for property declarations yielded by composition
declarations. (Note that by the uniqueness of attribute names along the generalisation
hierarchy only a single attribute with name pi may exist.)

A class/data type net morphism σ = (γ, π, ρ, α, µ) : Σ = ((C,≤C), P,O,A,M) → T =
((D,≤D), Q,R,B,N) is given by

� a class/data type hierarchy map γ : (C,≤C)→ (D,≤D);

� an attribute declaration map π : P → Q such that if π(c.p : τ [c′]) = d.q : τ ′[d′] ∈ Q, then
d = γ(c), d′ = γ(c′), and τ = τ ′;

� a query operation declaration map ρ : O → R such that if ρ(c.o(x1 : τ1[c1], . . . , xr : τn[cr]) :
τ [c′]) = d.r(x1 : τ ′1[d1], . . . , xr : τ ′n[dr]) : τ [d′] ∈ R, then d = γ(c), di = γ(ci), d

′ = γ(c′),
τ ′i = τi and τ = τ ′;

� an association declaration map α : A → B such that if α(a(p1 : τ1[c1], . . . , pr : τn[cr])) =
b(q1 : τ ′1[d1], . . . , qs : τ ′s[ds]) ∈ B, then r = s and di = γ(ci) and τi = τ ′i for 1 ≤ i ≤ r, and
member ends owned by the association are mapped into owned member ends;

� a composition declaration map µ : M → N such that if µ(m(p1 : Set[c1], �p2 : τ2[c2])) =
n(q1 : Set[d1], �q2 : τ ′2[d2]) ∈ N , then d1 = γ(c1), d2 = γ(c2), and τ2 = τ ′2, and member
ends owned by the composition are mapped into owned member ends.

Class/data type nets as objects and class/data type net morphisms as morphisms form the
category of class/data type nets, denoted by Cl.

For the example in Fig. E.1 we have

Classes/data types: Net, Station, Line,Connector,Unit,Track,Point, Linear,

Boolean,UnlimitedNatural, Integer,Real, String

Generalisations: Point ≤ Unit, Linear ≤ Unit

Properties: Line.linear : Set[Boolean],Track.linear : Set[Boolean],

Net.station : Set[Station],Net.line : Set[Line],

Station.net : Set[Net], Station.unit : Set[Unit], Station.track : Set[Track],

Line.net : Set[Net], Line.linear : Set[Linear],

Connector.unit : Set[Unit],

Unit.station : Set[Station],Unit.connector : Set[Connector],

Track.station : Set[Station],Track.linear : Set[Linear],

Linear.track : Set[Track], Linear.line : Set[Line]

Associations: l2l(line : Set[Line], linear : Set[Linear]),

7All member ends are instances of Property; UML Superstructure Speci�cation 2.4.1, p. 36.
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2..*

1

*

*

1

*

1..4 1

1..*

1

1..*

1

Net

Station Line

linear : Boolean

n2s n2l

Unit Track

linear : Boolean

s2u s2t

Connector c2u

Point Linear l2t

l2l

Figure E.1.: Sample UML class diagram.

l2t(linear : Set[Linear], track : Set[Track]),

c2u(connector : Set[Connector], unit : Set[Unit])

Compositions: n2s(net : Set[Net], �station : Set[Station]),

n2l(net : Set[Net], � line : Set[Line]),

s2u(station : Set[Station], �unit : Set[Unit]),

s2t(station : Set[Station], �track : Set[Track])

Here all member ends are owned by class/data types.

E.3. Models
As stated above, models (in the sense of the term model de�ned in clause 4) of UML class
diagrams are obtained via a translation to Common Logic.
For a classi�er net Σ = ((C,≤C),K, P,M,A), we de�ne a Common Logic theory CL(Σ)

consisting of:

� for c ∈ C, a predicate8 CL(c), such that81 Note(81)

� CL(Boolean) = buml:Boolean,

8Strictly speaking, this is just a name.
81
Note: class predicates should be restricted to be unary
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� CL(String) = buml:String,

� CL(Integer) = buml:Integer,

� CL(UnlimitedNatural) = form:NaturalNumber,

� CL(Real) = buml:Real,

� CL(c) = c, if c is an enumeration type with values k1, . . . , kn. In this case, addi-
tionally, the Common Logic theory is augmented by (enumeration c k1 · · · kn),82 Note(82)

� CL(List[c]) = form:Sequence,

� CL(Set[c]) = form:Set,

� CL(OrderedSet[c]) = form:OrderedSet,

� CL(Bag[c]) = form:Bag,

� CL(c) = c, if c a class name which is not one of the above.

� for each relation c1 ≤C c2, an axiom (forall (x) (if (C1 x) (C2 x))), where
C1= CL(c1), C2= CL(c2),

� CL maps each attribute declaration c.p : τ [c′] ∈ P to a predicate CL(c.p) and axioms
stating type-correctness and functionality:

� (forall (x y) (if (c.p x y) (c x)))

� (forall (x y) (if (c.p x y) (τ [c′] y))) 9

� (forall (x)
x (if (c x) (exists (y) (c.p x y))))

� (forall (x y z)
x (if (and (c.p x y) (c.p x z))
x x (= y z)))

� CL maps each query operation declaration c.o(x1 : τ1[c1], . . . , xr : τn[cr]) : τ [c′] ∈ O to
a predicate CL(c.o) and axioms stating type-correctness and functionality:83 Note(83)

� (forall (x x1 x2 · · · xn y) (if (c.o x x1 x2 · · · xn y) (c x)))

� (forall (x x1 x2 · · · xn y) (if (c.o x x1 x2 · · · xn y) (ci xi))) for
each i = 1 . . . n,10

� (forall (x x1 x2 · · · xn y) (if (c.o x x1 x2 · · · xn y) (τ [c′] y)))

� (forall (x x1 x2 · · · xn)
x (if (and (c x) (c1 x1) · · · (cn xn))
x x (exists (y) (c.o x x1 x2 · · · xn y))))

� (forall (x x1 x2 · · · xn y z)
x (if (and (c.o x x1 x2 · · · xn y) (c.o x x1 x2 · · · xn z))
x x (= y z)))

� CL maps each composition declaration m(p1 : Set[c1], �p2 : τ2[c2]) ∈ M to a constant
CL(m) and axioms stating that CL(m) is a �nite binary relation represented as a se-
quence of pairs of the correct type:

(from:Sequence m)
(forall (p) (if (form:sequence-member p m)

(and (form:Pair p) (c1 (form:first p)) (c2 (form:second p))))

82
Note: Ed Seidewitz: enumerations are specializable, but this is type-unsafe, so maybe omit it
9With (τ [c] x), we abbreviate
(and (τ x) (forall (m) (if (from:τ-member m x) (c’ m)))).

83
Note: axioms need to be adapted to the fact that parameter types are collection types

10Note that the · · · here is meta notation, not a sequence marker!
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� for any pair of composition declarationsm(p1 : Set[c1], �p2 : τ2[c2]),m′(p′1 : Set[c′1], �p′2 :
τ ′2[c′2]) ∈M , an axiom stating �each instance has at most one owner�:

(forall (o o’ i)
(if (and (form:sequence-member (form:pair o i) m)

(form:sequence-member (form:pair o’ i) m’))
(= o o’)))

� CL maps each association declaration a(p1 : τ1[c1], . . . , pr : τr[cr]) ∈ A to a predicate
CL(a) and axioms stating that CL(a) is a �nite relation represented as a sequence of
tuples of the correct types (the latter again being represented as sequences):
(from:Sequence a)
(forall (t) (if (form:sequence-member t a)
x x (exists (x1 · · · xr)
x x x (and (c1 x1) · · · (cr xr)
(= t (form:sequence-insert x1 (· · · (form:sequence-insert xr form:empty-sequence)))))))))

� the interpretation of a member end of a binary association declaration owned by a
class/data type coincides with the interpretation of the attribute: if for i ∈ {1, 2},
a.pi : τi[ci] for a = a(p1 : τ1[c1], p2 : τ2[c2]) ∈ A is owned by c ∈ C with c.pi : τi[ci] ∈ P ,
then
(forall (o s)
x (if (c.p o s) (= s (form:seq2τi (form:selecti o a))))

� the interpretation of a member end of a composition declaration owned by a class/data
type coincides with the interpretation of the attribute: if for i ∈ {1, 2}, m.p : τi[ci] for
m = m(p1 : Set[c1], �p2 : τ2[c2]) ∈ M is owned by c ∈ C with c.p : τi[ci] ∈ P , then
(forall (o s)
x (if (c.p o s) (= s (form:seq2τi (form:selecti o m))))

It is straightforward to extend CL from signatures to signature morphisms.

Models. A Σ-model of the UML class diagram institution is just a CL(Σ)-model in Common
Logic. That is, the UML class diagram institution inherits models from Common Logic.
Moreover, model reducts are inherited as well, using the action of CL on signature morphisms.
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E.4. Sentences
The set of multiplicity formulae Frm is given by the following grammar:

Frm ::= NumLiteral ≤ FunExpr
| FunExpr ≤ NumLiteral

FunExpr ::= # Attribute
| # Assocation . End
| # Composition . End

Attribute ::= Classifier . End :Type
Association ::= Name ( End : Type( , End : Type)∗ )

Composition ::= Name ( End : Set [ Classifier ], �End : Type )

Type ::= Annot [ Classifier ]
Classifier ::= Name

End ::= Name
Annot ::= OrderedSet | Set | Sequence | Bag

NumLiteral ::= 0 | 1 | · · ·

where Name is a set of names and NumLiteral is assumed to be equipped with an appropriate
function J−K : NumLiteral → Z.
The set of Σ-multiplicity constraints Mult(Σ) for a class/data type net Σ is given by the

multiplicity formulae in Frm such that all mentioned elements of Association and Composition
correspond to association declarations and composition declarations of Σ, respectively, and
the member end name mentioned in the clauses of FunExpr occur in the mentioned association
and composition, respectively.
The translation of a formula ϕ ∈ Mult(Σ) along a class/data type net morphism σ, written

as σ(ϕ), is given by applying σ to associations, compositions, and member end names.

Example For the example in Fig. E.1 we have

2 ≤ #n2s(net : Set[Net], �station : Set[Station]).station

#n2s(net : Set[Net], �station : Set[Station]).net = 1

#n2l(net : Set[Net], � line : Set[Line]).net = 1

#s2u(station : Set[Station], �unit : Set[Unit]).station = 1

#s2t(station : Set[Station], �track : Set[Track]).station = 1

1 ≤ #c2u(connector : Set[Connector], unit : Set[Unit]).unit ≤ 4

#c2u(connector : Set[Connector], unit : Set[Unit]).connector = 1

1 ≤ #l2t(track : Set[Track], linear : Set[Linear]).track

#l2t(track : Set[Track], linear : Set[Linear]).linear = 1

1 ≤ #l2t(line : Set[Line], linear : Set[Linear]).line

#l2l(line : Set[Line], linear : Set[Linear]).linear = 1

where we write �=� and �− ≤ − ≤ −� as respective abbreviations for two inequations using
�≤�.
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E.5. Satisfaction relation.
The satisfaction relation is inherited from Common Logic, using a translation CL(_) of mul-
tiplicity formulas to Common Logic. That is, given a UML class and object diagram Σ, a
multiplicity formula ϕ and a Σ-modelM (the latter amounts to a CL(Σ)-modelM in Common
Logic), we de�ne

M |=Σ ϕ i� M |=CL(Σ) CL(ϕ)

The translation of multiplicity formulas to Common Logic is as follows:

� CL(` ≤ #c.p : τ [c′]) =
(forall (x y n)
x (if (and (c.p x y) (form:τ-size y n)) (buml:leq J`K n))

� CL(` ≤ #a(p1 : τ1[c1], . . . , pr : τr[cr]).pi =
(forall (x1 · · · xi−1 xi+1 · · · xr)
x (if (and (c1 x1) · · · (ci−1 xi−1) (ci+1 xi+1) · · · (cr xr)
x x x (form:sequence-size
x x x x (form:n-select a i [x1 · · · xi−1 xi+1 · · · xr]) n))
x x (buml:leq J`K n)))

� CL(|=Σ ` ≤ #m(p1 : Set[c1], �p2 : τ2[c2]).pi) =
(forall (x)
x (if (and (c3−i x) (form:τ-size (form:selecti x m) n))
x x (buml:leq J`K n))

where J−K : NumLit → Z maps a numerical literal to an integer, and [x1 · · ·xn] abbreviates
(form:sequence-insert x1 · · · (form:sequence-insert xn form:empty-sequence)).
The translation for FunExpr ≤ NumLiteral is analogous.
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F. Annex (normative): Conformance
of CASL with DOL

Casl [11] extends many-sorted �rst-order logic with partial functions and subsorting. It also
provides induction sentences, expressing the (free) generation of datatypes. Casl has been
presented as an institution in [45, 11]. We here only sketch this institution.
Casl signatures consist of a set S of sorts with a subsort relation ≤ between them together

with families {PFw,s}w∈S∗,s∈S of partial functions, {TFw,s}w∈S∗,s∈S of total functions and
{Pw}w∈S∗ of predicate symbols. If Σ is a signature, two operation symbols with the same
name f and with pro�les w → s and w′ → s′, denoted fw,s and fw′,s′ , are in the overloading
relation if there are w0 ∈ S∗ and s0 ∈ S such that w0 ≤ w,w′ and s, s′ ≤ s0. Overloading
of predicates is de�ned in a similar way. Signature morphisms consist of maps taking sort,
function and predicate symbols respectively to a symbol of the same kind in the target
signature, and they must preserve subsorting, typing of function and predicate symbols and
totality of function symbols, and overloading.
For a signature Σ, terms are formed starting with variables from a sorted set X using

applications of function symbols to terms of appropriate sorts, while sentences are partial
�rst-order formulas extended with sort generation constraints which are triples (S′, F ′, σ′)
such that σ′ : Σ′ → Σ and S′ and F ′ are respectively sort and function symbols of Σ′. Partial
�rst-order formulas are translated along a signature morphism ϕ : Σ → Σ′′ by replacing
symbols as prescribed by ϕ while sort generation constraints are translated by composing the
morphism σ′ in their third component with ϕ.
Models interpret sorts as nonempty sets such that subsorts are injected into supersorts,

partial/total function symbols as partial/total functions and predicate symbols as relations,
such that the embeddings of subsorts into supersorts are monotone w.r.t. overloading.
The satisfaction relation is the expected one for partial �rst-order sentences. A sort gen-

eration constraint (S′, F ′, σ′) holds in a model M if the carriers of the reduct of M along σ′

of the sorts in S′ are generated by function symbols in F ′.
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G. Annex (normative): A Core Logic
Graph

This annex provides a core graph of logics and translations, covering those OMS languages
whose conformance with DOL is established in the preceding, normative annexes (OWL 2
DL in annex B, Common Logic in annex C, and RDFS in annex D). The graph is shown in
Figure G.1. Its nodes refer to the following OMS languages and pro�les:

� RDF W3C/TR REC-rdf11-concepts:2014

� RDFS W3C/TR REC-rdf11-schema:2014

� EL, QL, RL (all being pro�les of OWL) W3C/TR REC-owl2-pro�les:2009

� OWL W3C/TR REC-owl2-syntax:2009

� CL (Common Logic) ISO/IEC 24707:2007

The translations are speci�ed in [44]. 84 Note(84)
85

Note(85)
The list of chosen logics includes those ones required as mandatory ones in the RFP. Since

these are only ontology and modeling languages, also a speci�cation language is included,
namely the Common Algebraic Speci�cation Language (CASL). The list of translations com-
prises standard translations from the literature, as well as further translations that are con-
sidered useful for logical interoperability.

G.1. EL → OWL and EL++ → SROIQ(D)

EL → OWL is the sublanguage inclusion obtained by the syntactic restriction according to
the de�nition of EL, see W3C/TR REC-owl2-pro�les:2009. Since by de�nition, EL + + is a
syntactic restriction of SROIQ(D), EL + + → SROIQ(D) is the corresponding sublogic
inclusion.

G.2. QL → OWL and DL-LiteR → SROIQ(D)

QL → OWL is the sublanguage inclusion obtained by the syntactic restriction according to
the de�nition of QL, see W3C/TR REC-owl2-pro�les:2009. Since by de�nition, DL-LiteR is a
syntactic restriction of SROIQ(D), DL-LiteR → SROIQ(D) is the corresponding sublogic
inclusion.

84
Note: TODO: Provide linear syntax here (as in the paper)

85
Note: FYI: We need this in order to be able to say something about default translations, and about
establishing conformance by translation to a language that already conforms.
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CL

OWL

EL QL RL RDF

RDFS

subinstitution

theoroidal subinstitution

simultaneously exact and 
model-expansive comorphisms

green: decidable ontology languages

orange: first-order with some 
              second-order constructs
 

Figure G.1.: Translations between conforming OMS languages (normative)

G.3. RL → OWL and RL → SROIQ(D)

RL→ OWL is the sublanguage inclusion obtained by the syntactic restriction according to the
de�nition of RL, see W3C/TR REC-owl2-pro�les:2009. Since by de�nition, RL is a syntactic
restriction of SROIQ(D), RL → SROIQ(D) is the corresponding sublogic inclusion.

G.4. SimpleRDF → RDF

SimpleRDF → RDF is an obvious inclusion, except that SimpleRDF resources need to be
renamed if they happen to have a prede�ned meaning in RDF. The model translation needs
to forget the �xed parts of RDF models, since this part can always reconstructed in a unique
way, we get an isomorphic model translation.

G.5. RDF → RDFS

This is entirely analogous to SimpleRDF→ RDF.

G.6. SimpleRDF → SROIQ(D)
86 Note(86)

86
Note: This translation is not really useful. Consider the RDF-OWL-reduct construction instead.
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A SimpleRDF signature is translated to SROIQ(D) by providing a class P and three roles
sub, pred and obj (these reify the extension relation), and one individual per SimpleRDF
resource. A SimpleRDF triple (s, p, o) is translated to the SROIQ (D) sentence

> v ∃U.(∃sub.{s} u ∃pred.{p} u ∃obj.{o}).

From an SROIQ (D) model I, obtain a SimpleRDF model by inheriting the universe and the
interpretation of individuals (then turned into resources). The interpretation P I of P gives
Pm, and EXTm is obtained by de-reifying, i.e.

EXTm(x) := {(y, z)|∃u.(u, x) ∈ predI , (u, y) ∈ subI , (u, z, ) ∈ objI}.

RDF→ SROIQ(D) is de�ned similarly. The theory of RDF built-ins is (after translation to
SROIQ (D)) added to any signature translation. This ensures that the model translation
can add the built-ins.

G.7. OWL → FOL

G.7.1. Translation of Signatures
Φ((C,R, I)) = (F, P ) with

� function symbols: F = {a(1)|a ∈ I}
� predicate symbols P = {A(1)|A ∈ C} ∪ {R(2)|R ∈ R}

G.7.2. Translation of Sentences
Concepts are translated as follows:

� αx(A) = A(x)

� αx(¬C) = ¬αx(C)

� αx(C uD) = αx(C) ∧ αx(D)

� αx(C tD) = αx(C) ∨ αx(D)

� αx(∃R.C) = ∃y.(R(x, y) ∧ αy(C))

� αx(∃U.C) = ∃y.αy(C)

� αx(∀R.C) = ∀y.(R(x, y)→ αy(C))

� αx(∀U.C) = ∀y.αy(C)

� αx(∃R.Self) = R(x, x)

� αx(≤ nR.C) = ∀y1, . . . , yn+1.
∧
i=1,...,n+1(R(x, yi) ∧ αyi(C))→

∨
1≤i<j≤n+1 yi = yj

� αx(≥ nR.C) = ∃y1, . . . , yn.
∧
i=1,...,n(R(x, yi) ∧ αyi(C)) ∧

∧
1≤i<j≤n yi 6= yj

� αx({a1, . . . an}) = (x = a1 ∨ . . . ∨ x = an)

For inverse roles R−, R−(x, y) has to be replaced by R(y, x), e.g.

αx(∃R−.C) = ∃y.(R(y, x) ∧ αy(C))

This rule also applies below.
Sentences are translated as follows:
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� αΣ(C v D) = ∀x. (αx(C)→ αx(D))

� αΣ(a : C) = αx(C)[a/x]1

� αΣ(R(a, b)) = R(a, b)

� αΣ(R v S) = ∀x, y.R(x, y)→ S(x, y)

� αΣ(R1; . . . ;Rn v R) =
∀x, y.(∃z1, . . . zn−1.R1(x, z1) ∧R2(z1, z2) ∧ . . . ∧Rn(zn−1, y))→ R(x, y)

� αΣ(Dis(R1, R2)) = ¬∃x, y.R1(x, y) ∧R2(x, y)

� αΣ(Ref(R)) = ∀x.R(x, x)

� αΣ(Irr(R)) = ∀x.¬R(x, x)

� αΣ(Asy(R)) = ∀x, y.R(x, y)→ ¬R(y, x)

� αΣ(Tra(R)) = ∀x, y, z.R(x, y) ∧R(y, z)→ R(x, z)

G.7.3. Translation of Models
� For M ′ ∈ ModFOL(ΦΣ) de�ne βΣ(M ′) := (∆, ·I) with ∆ = |M ′| and AI = M ′A, a

I =
M ′a, R

I = M ′R.

Proposition 15 CI =
{
m ∈M ′Thing|M ′ + {x 7→ m} |= αx(C)

}
Proof. By Induction over the structure of C.

� AI = M ′A =
{
m ∈M ′Thing|M ′ + {x 7→ m} |= A(x)

}
� (¬C)I = ∆\CI =I.H. ∆\{m ∈M ′Thing|M ′+{x 7→ m} |= αx(C)} = {m ∈M ′Thing|M ′+
{x 7→ m} |= ¬αx(C)}

2
The satisfaction condition holds as well.

G.8. OWL → CL

1Replace x by a.
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H. Annex (informative): Extended
Logic Graph

This annex extends the graph of logics and translations given in annex G by a list of OMS
language whose conformance with DOL will be established through the registry. The graph
is shown in Figure H.1. Its nodes are included in the following list of OMS languages and
pro�les (in addition to those mentioned in annex G):

� PL (propositional logic)

� SimpleRDF (RDF triples without a reserved vocabulary)

� OBOOWL and OBO1.4

� RIF (Rule Interchange Format)

� EER (Enhanced Entity-Relationship Diagrams)

� Datalog

� ORM (object role modeling)

� the meta model of schema.org

� UML (Uni�ed Modeling Language), with possibly di�erent logics according to di�erent
UML semantics87 Note(87)

� SKOS (Simple Knowledge Organization System )

� FOL= (untyped �rst-order logic, as used for the TPTP format)

� F-logic

The actual translations are speci�ed in [44].
88 Note(88)

87
Note: This should probably distinguish between class diagrams and others, since UML class diagrams
are already covered in another annex.

88
Note: TODO: Provide linear syntax here (as in the paper). TM: what do you mean by this?
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CL
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model-expansive comorphisms

model-expansive comorphisms

grey: no fixed expressivity

green: decidable ontology languages

yellow: semi-decidable

orange: some second-order constructs

OBO 1.4

Figure H.1.: Translations between conforming OMS languages (extended)
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I. Annex (informative): Example Uses
of all DOL Constructs

89 Note(89)

90

Top-level declarations in libraries

Top-level declaration Examples

language IRI Alignments, Publications

logic IRI Alignments, Mereology

serialization IRI Alignments, Mereology

Pre�xMap Mereology

ontology IRI = OMS end Alignments, Mereology

ontology IRI = %mcons OMS end Mereology

interpretation IRI : OMS to OMS = Symbol |-> Symbol ... Mereology

interpretation IRI : OMS to OMS = %cons Symbol |-> Symbol ...

interpretation IRI : OMS to OMS = translation IRI Mereology

equivalence IRI : OMS <-> OMS = OMS end Algebra

module IRI : OMS of OMS for Symbols

module IRI %ccons : OMS of OMS for Symbols

alignment IRI : OMS to OMS end

alignment IRI 1 : OMS to OMS end

alignment IRI ? : OMS to OMS end

alignment IRI + : OMS to OMS end

alignment IRI * : OMS to OMS end

alignment IRI : OMS to OMS = Correspondences Alignments

Note(90)

89
Note: the uses cases in the RFP should be reused and worked into DOL examples

90
Note: Q-AUT: Should we have another column here that refers to the abstract syntax?
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OMS

OMS notation Examples

BasicOMS Alignments, Mereology

IRI Alignments, Mereology

IRI %( IRI )%

minimize { OMS } BlocksWithCircumscription

OMS minimize Symbols var Symbols BlocksWithCircumscription

OMS with Symbol |-> Symbol ... Alignments

OMS with translation IRI Mereology

OMS with translation IRI : IRI → IRI

OMS with translation IRI → IRI

OMS with translation → IRI

OMS hide SymbolItems Algebra

OMS reveal Symbols

OMS reveal Symbol |-> Symbol ...

OMS hide along IRI

OMS hide along IRI : IRI → IRI

OMS hide along IRI → IRI

OMS hide along → IRI

OMS approximate with IRI

OMS approximate in IRI with IRI

OMS approximate in IRI

OMS and OMS

OMS then OMS Mereology

OMS then %ccons OMS

OMS then %ccons %( IRI )% OMS

OMS then %mcons OMS

OMS then %mono OMS

OMS then %wdef OMS

OMS then %def OMS

OMS then %implied OMS BlocksWithCircumscription

logic IRI : OMS

language IRI : OMS

serialization IRI : OMS

OMS bridge Translation OMS Publications

combine NetworkElements Alignments, Publications

combine NetworkElements excluding IRIs

I.1. Mereology: Distributed and Heterogeneous
Ontologies

91 Note(91)

91
Note: Q-AUT: In the TKE paper we made the name of the propositional logic ontology syntax explicit.
The propositional logic listing now leaves us with a problem: neither is propositional logic specified as
DOL-conformant, nor is Hets’ CASL-like syntax, nor is anything of this intended to ever be normative.
TM: hence either leave it out, or make propositional logic normative. What about the examples in
OWL+CL develop during the Ontology Summit Hackathon?
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%prefix( : <http://www.example.org/mereology#>
owl: <http://www.w3.org/2002/07/owl#>
log: <http://www.omg.org/spec/DOL/logics/>

%% descriptions of logics ...
trans: <http://www.omg.org/spec/DOL/translations/> )%

%% ... and translations

library Mereology

%% non-standard serialization built into Hets:
logic log:Propositional syntax ser:Prop/Hets

%% basic taxonomic information about mereology reused from DOLCE:
ontology Taxonomy = %mcons

props PT, T, S, AR, PD
. S ∨ T ∨ AR ∨ PD −→ PT

%% PT is the top concept
. S ∧ T −→ ⊥ %% PD, S, T, AR are pairwise disjoint
. T ∧ AR −→ ⊥

%% and so on
end

%% OWL Manchester syntax declaration:
language lang:OWL2 logic log:SROIQ syntax ser:OWL2/Manchester

%% Parthood in SROIQ, as far as easily expressible:
ontology BasicParthood =
Class: ParticularCategory

SubClassOf: Particular
%% omitted similar declarations of the other classes

DisjointUnionOf: SpaceRegion, TimeInterval, AbstractRegion, Perdurant
%% pairwise disjointness more compact

%% thanks to an OWL built-in
ObjectProperty: isPartOf

Characteristics: Transitive
ObjectProperty: isProperPartOf

Characteristics: Asymmetric SubPropertyOf: isPartOf
Class: Atom

EquivalentTo: inverse isProperPartOf only owl:Nothing
end %% an atom has no proper parts

%% translate the logic, then rename the entities
interpretation TaxonomyToParthood : Taxonomy to BasicParthood =

translation trans:PropositionalToSROIQ,
PT 7→ Particular, S 7→ SpaceRegion,
T 7→ TimeInterval, A 7→ AbstractRegion, %[ and so on ]%

logic log:CommonLogic syntax ser:CommonLogic/CLIF
%% syntax: the Lisp-like CLIF dialect of Common Logic
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%% ClassicalExtensionalParthood imports the OWL ontology from above,
%% translate it to Common Logic, then extend it there:
ontology ClassicalExtensionalParthood =
BasicParthood with translation trans:SROIQtoCL

then
. (forall (X) (if (or (= X S) (= X T) (= X AR) (= X PD))

(forall (x y z) (if (and (X x) (X y) (X z))
(and

%% now list all the axioms:
%% antisymmetry:

(if (and (isPartOf x y) (isPartOf y x)) (= x y))
%% transitivity; not combinable with asymmetry in OWL DL:

(if (and (isProperPartOf x y) (isProperPartOf y z)) (isProperPartOf x z))
(iff (overlaps x y) (exists (pt) (and (isPartOf pt x) (isPartOf pt y))))
(iff (isAtomicPartOf x y) (and (isPartOf x y) (Atom x)))
(iff (sum z x y)

(forall (w) (iff
(overlaps w z)
(and (overlaps w x) (overlaps w y)))))

%% existence of the sum:
(exists (s) (sum s x y))
)))))

%% definition of fusion
. (forall (Set a) (iff (fusion Set a)

(forall (b) (iff (overlaps b a)
(exists (c) (and (Set c) (overlaps c a)))))))

}

I.2. Defined Concepts

library Persons
logic OWL

ontology Persons =
Class Person
Class Female

then %def
Class: Woman EquivalentTo: Person and Female

end

I.3. Blocks World: Minimization
92 Note(92)

92
Note: Q-AUT: Here we need the prefixes for registry entries (e.g. logics) once more; they should
be reused across examples. Or we need to specify a mechanism that gets rid of these pre-
fixes altogether. @TM, could you please comment on my specification enhancement request
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library BlocksWithCircumscription
logic log:OWL

ontology Blocks =
%% FIXED PART
Class: Block
Individual: B1 Types: Block
Individual: B2 Types: Block DifferentFrom: B1

%% B1 and B2 are different blocks
then

%% CIRCUMSCRIBED PART
minimize {

Class: Abnormal
Individual: B1 Types: Abnormal

%% B1 is abnormal
}

then
%% VARYING PART
Class: Ontable
Class: BlockNotAbnormal

EquivalentTo: Block and not Abnormal
SubClassOf: Ontable
%% Normally, a block is on the table

then %implied
Individual: B2 Types: Ontable

%% B2 is on the table
end

93 Note(93)

ontology Blocks_Alternative =
Class: Block
Class: Abnormal
Individual: B1 Types: Block, Abnormal
Individual: B2 Types: Block DifferentFrom: B1

%% B1 and B2 are different blocks
%% B1 is abnormal

Class: Ontable
Class: BlockNotAbnormal

EquivalentTo: Block and not Abnormal
SubClassOf: Ontable
%% Normally, a block is on the table

minimize Abnormal var Ontable, BlockNotAbnormal
then %implied
Individual: B2 Types: Ontable

%% B2 is on the table

http://trac.informatik.uni-bremen.de:8080/hets/ticket/1020#comment:33?
93
Note: Instead of Blocks World, perhaps we could specify an ontology that uses inheritance networks
with exceptions, and then use circumscription to axiomatize that ontology.

119



I. Annex (informative): Example Uses of all DOL Constructs

end

I.3.1. Alignments

%prefix( : <http://www.example.org/alignment#>
owl: <http://www.w3.org/2002/07/owl#>
log: <http://www.omg.org/spec/DOL/logics/> %% descriptions of logics ...
trans: <http://www.omg.org/spec/DOL/translations/> )% %% ... and translations

library Alignments

language lang:OWL2 logic log:SROIQ syntax ser:OWL2/Manchester

alignment Alignment1 : { Class: Woman } to { Class: Person } =
Woman < Person

end

ontology AlignedOntology1 =
combine Alignment1

end

ontology Onto1 =
Class: Person
Class: Woman SubClassOf: Person
Class: Bank

end

ontology Onto2 =
Class: HumanBeing
Class: Woman SubClassOf: HumanBeing
Class: Bank

end

alignment VAlignment : Onto1 to Onto2 =
Person = HumanBeing,
Woman = Woman

end

network N =
1 : Onto1, 2 : Onto2, VAlignment

end

ontology VAlignedOntology =
combine N
%% 1:Person is identified with 2:HumanBeing
%% 1:Woman is identified with 2:Woman
%% 1:Bank and 2:Bank are kept distinct
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end

ontology VAlignedOntologyRenamed =
VAlignedOntology with 1:Bank |-> RiverBank, 2:Bank |-> FinancialBank

end

I.4. Distributed Description Logics

%prefix( : <http://www.example.org/mereology#>
owl: <http://www.w3.org/2002/07/owl#>
log: <http://www.omg.org/spec/DOL/logics/> %% descriptions of logics ...
trans: <http://www.omg.org/spec/DOL/translations/> )% %% ... and translations

library Publications

language lang:OWL2 logic log:SROIQ syntax ser:OWL2/Manchester

ontology Publications1 =
Class: Publication
Class: Article SubClassOf: Publication
Class: InBook SubClassOf: Publication
Class: Thesis SubClassOf: Publication
Class: MasterThesis SubClassOf: Thesis
Class: PhDThesis SubClassOf: Thesis

end

ontology Publications2 =
Class: Thing
Class: Article SubClassOf: Thing
Class: BookArticle SubClassOf: Thing
Class: Publication SubClassOf: Thing
Class: Thesis SubClassOf: Thing

end

ontology Publications_Combined =
combine

1 : Publications1 with translation OWL2MS-OWL,
2 : Publications2 with translation OWL2MS-OWL
%% implicitly: Article 7→ 1:Article ...
%% Article 7→ 2:Article ...

bridge with translation MS-OWL2DDL
%% implicitly added my translation MS-OWL2DDL:
%% binary relation providing the bridge

1:Publication
v−→ 2:Publication

1:PhdThesis
v−→ 2:Thesis

1:InBook
v−→ 2:BookArticle

1:Article
v−→ 2:Article
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1:Article
w−→ 2:Article

end

ontology Publications_Extended =
Publications
then
bridge with translation DDL2-ECO

%% turns implicit domain-relation into default relation ’D’
%% add E-connection style bridge rules on top

end

library Market

language lang:OWL2 logic log:SROIQ syntax ser:OWL2/Manchester
ontology Purchases =
combine

1 : { Class: PurchaseOrder },
2 : { ObjectProperty: Buyer

ObjectProperty: Good
ObjectProperty: BoughtBy }

bridge with translation OWL2DDLwithRoles
1:PurchaseOrder -into-> 2:BoughtBy

%% means in FOL:
%% forall x 1PurchaseOrder(x) -> forall yz CR12(x,y,z) -> 2BoughtBy(y,z)
end

I.5. Ontology modules

library GalenModule
logic OWL
ontology myGalen =

http://purl.bioontology.org/ontology/GALEN extract Drugs, Joints, Bodyparts
end

module myGalenIsAModule : myGalen of http://purl.bioontology.org/ontology/GALEN
for Drugs, Joints, Bodyparts

end

I.6. Algebra
94 Note(94)

%prefix( : <http://www.example.org/alignment#>
owl: <http://www.w3.org/2002/07/owl#>

94
Note: use “spec” here???
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log: <http://www.omg.org/spec/DOL/logics/> %% descriptions of logics ...
trans: <http://www.omg.org/spec/DOL/translations/> )% %% ... and translations

library Algebra

logic log:CommonLogic syntax ser:CommonLogic/CLIF

ontology implicit_group =
(forall (x y z)

(= (op x (op y z)) (op (op x y) z)))
(exists (e)

(forall (x)
(and (= x (op e x))

(= x (op x e)))))
(forall (x)

(exists (y)
(and (= x (op x (op x y)))

(= x (op x (op y x))))))
end

ontology explicit_group =
(forall (x y z)

(= (op x (op y z)) (op (op x y) z)))
(forall (x) (and (= x (op e x))

(= x (op x e)))))
(forall (x)

(and (= x (op x (op x (inv x))))
(= x (op x (op (inv x) x))))))

end

equivalence groups_equiv : implicit_group <-> { explicit_group hide e, inv }
end

equivalence e : algebra:BooleanAlgebra
↔ algebra:BooleanRing =

x∧y = x·y
x∨y = x+y+x·y
¬x = 1+x
x·y = x∧y
x+y = (x∨y) ∧ ¬(x∧y)

end

logic CASL

spec InterpolatedGroup =
sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z
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. x+inv(x) = 0
forget inv

end

entailment ent = InterpolatedGroup
entails { . forall x:Elem . exists y . Elem . x+y=0 }

end

I.7. Model-driven development
We present as a small example in model-deriven development using UML, taken from [33].
It involves the design of a traditional automatic teller machine (ATM) connected to a bank.
For simplicity, we only describe the handling of entering a card and a PIN with the ATM.
After entering the card, one has three trials for entering the correct PIN (which is checked
by the bank). After three unsuccessful trials the card is kept.
Figure I.1(a) shows a possible interaction between an atm and a bank object, which con-

sists out of four messages: the atm requests the bank to verify if a card and PIN number
combination is valid, in the �rst case the bank requests to reenter the PIN, in the second case
the veri�cation is successful. This interaction presumes that the system has an atm and a
bank as objects. This can, e.g., be ensured by a composite structure diagram, see Fig. I.1(b),
which � among other things � speci�es the objects in the initial system state. Further-
more, it speci�es that the communication between atm and bank goes through the two ports
bankCom and atmCom linked by a connector. The communication protocol on this connector
is captured with a protocol state machine, see Fig. I.1(c). The protocol state machine �xes in
which order the messages verify, verified, reenterPIN, and markInvalid between atm and bank
may occur. Figure I.1(d) provides structural information in form of an interface specifying
what is provided at the userCom port of the atm instance. An interface is a set of operations
that other model elements have to implement. In our case, the interface is described in a class
diagram. Here, the operation keepCard is enriched with the OCL constraint trialsNum >= 3,
which re�nes its semantics: keepCard can only be invoked if the OCL constraints holds.
Finally, the dynamic behaviour of the atm object is speci�ed by the behavioural state

machine shown in Fig. I.1(e). The machine consists of �ve states including Idle, CardEntered,
etc. Beginning in the initial Idle state, the user can trigger a state change by entering the
card. This has the e�ect that the parameter c from the card event is assigned to the cardId
in the atm object (parameter names are not shown on triggers). Entering a PIN triggers
another transition to PINEntered. Then the ATM requests veri�cation from the bank using
its bankCom port. The transition to Verifying uses a completion event : No explicit trigger is
declared and the machine autonomously creates such an event whenever a state is completed,
i.e., all internal activities of the state are �nished (in our example there are no such activities).
If the interaction with the bank results in reenterPIN, and the guard trialsNum < 3 is true,
the user can again enter a PIN.
We can now state the fact that the state machine of the atm, shown in Fig. I.1(e), is a

re�nement of the protocol state machine in Fig. I.1(c) as follows in DOL:

%prefix( : <http://www.example.org/uml#>
uml: <http://www.uml.org/spec/UML/>

%% descriptions of logics ...
log: <http://www.omg.org/spec/DOL/logics/>
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(a) Interaction (b) Composite structure

(c) Protocol state machine (d) Interface

(e) State machine

Figure I.1.: ATM example

logic log:uml

refinement abstract_to_concrete_atm =
psm refined to { atm with Idle |-> Idle, CardEntered |-> Idle,

PINEntered |-> Idle, Verified |-> Idle,
Verifying |-> Verifying
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hide card, PIN }
end

The re�nement uses an abstraction of the atm, expressed by the translation via symbol map
Idle |-> Idle, CardEntered |-> Idle, PINEntered |-> Idle, Verified |->
Idle, Verifying |-> Verifying, resulting in a two-state machine. Moreover, some de-
tail of the atm is hidden using hide. Then, the protocol state machine can be re�ned to the
thus abstracted atm.

I.8. Queries

library MyQuery
logic CASL
spec Person =

sort s
pred Person:s
op max,peter:Person

end
query MyQuery = select x where Person(x) in Person
end
substitution MySubst : { Person then op x:Person } to Person = x |-> max
end
result MyResult = MySubst for MyQuery
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This annex sketches scenarios that outline how DOL is intended to be applied. For each
scenario, we list its status of implementation, the DOL features it makes use of, and provide
a brief description.

J.1. Generating multilingual labels for menus in a user
interface

Status exists (but not yet DOL-based)

Features Aligning (multiple OWL ontologies), Annotation

DO-ROAM (Data and Ontology driven Route-�nding Of Activity-oriented Mobility1) is a
web service with an interactive frontend that extends OpenStreetMap by an ontology-based
search for located activities and opening hours [8]. The service is driven by a set of di�erent
OWL ontologies that have been aligned to each other using the Falcon matching tool [30]. The
user interface of the DO-ROAM web frontend o�ers multilingual labels, which are maintained
in close connection to the underlying ontologies.
Porting DO-ROAM to DOL would enable the coherent representation of the aligned on-

tologies as one OMS network, and it would enable the maintenance of the user interface labels
as annotations inside the ontology.

J.2. Connecting devices of differing complexity in an
Ambient Assisted Living setting

Status core ontology (not DOL-based) and service environment exists � the DOL-based
extensions not yet

Features Logical OMS mappings across di�erent logics, connection to linked open datasets

Consider the following ambient assisted living (AAL) scenario:

Clara instructs her wheelchair to get her to the kitchen (next door to the
living room. For dinner, she would like to take a pizza from the freezer and
bake it in the oven. (Her diet is vegetarian.) Afterwards she needs to rest in
bed.

Existing ontologies for ambient assisted living (e.g. the OpenAAL2 OWL ontology) cover the
core of these concepts; they provide at least classes (or generic superclasses) corresponding
to the concepts highlighted in bold. However, that does not cover the scenario completely:

1http://www.do-roam.org
2http://openaal.org
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� Some concepts (here: food and its properties, italicized) are not covered. There are
separate ontologies for that (such as the Pizza ontology3), whereas information about
concrete products (here: information about the concrete pizza in Clara's oven) would
rather come from Linked Open Datasets than from formal ontologies.

� Not all concepts (here: space and time, underlined) are covered at the required level
of complexity. OpenAAL says that appointments have a date and that rooms can be
connected to each other, but not what exactly that means. Foundational ontologies and
spatial calculi, often formalized in �rst-order logic, cover space and time at the level of
complexity required by a central controller of an apartment and by an autonomously
navigating wheelchair.

� Thirdly, even description logic might be too complex for very simple devices involved
into the scenario, such as the kitchen light switch, for which propositional logic may be
su�cient.

Thus, an adequate formalization of this scenario has to be heterogeneous. For example, one
could imagine the following axioms:

light switch �light is switched on if and only if someone is in the room and it is dark outside�
� this could be formalized in propositional logic as light_on ≡ person_in_room ∧
dark_outside.

freezer �a vegetarian pizza is a pizza whose toppings are all vegetarian� � this could be
formalized in description logic as VegetarianPizza ≡ Pizza u ∀hasTopping.Vegetarian

wheelchair �two areas in a house (e.g. a working area in a room) are either the same, or
intersecting, or bordering, or separated, or one is part of the other� � this could be
formalized as an RCC-style spatial calculus in �rst-order logic as

∀a1, a2. equal(a1, a2) Y overlapping(a1, a2) Y bordering(a1, a2) Y disconnected(a1, a2)
Ypart_of(a1, a2) Y part_of(a2, a1).

DOL would be capable of expressing all that within one library of heterogeneous ontologies
arranged around an OWL core (here: the OpenAAL ontology), including OMS mappings from
OpenAAL to the other ontologies, as well as a re-declaration of a concrete pizza product from
a product dataset as an instance of the Pizza OWL class.

J.3. Interpreting the OWL formalization of the DOLCE
foundational ontology in First-order logic

Status potential use case

Features Logical OMS mappings

DOLCE is a foundational ontology that has primarily been formalized in the �rst-order logic
ontology language KIF (a predecessor of Common Logic), but also in OWL (�DOLCE Lite�)
[41]. This `OWLized' version was targeting use in semantic web services and domain ontology
interoperability, and to provide the generic categories and relationships to aid domain ontology
development. DOLCE has been used also for semantic middleware, and in OWL-formalized

3This is not a fully comprehensive food ontology, but rather a well-known sample OWL ontology;
cf. http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/

128

http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/


J. Annex (informative): Use cases

ontologies of neuroimaging, computing, ecology, and data mining and optimization. Given
the di�erences in expressivity, DOLCE Lite had to simplify certain notions. For example,
the DOLCE Lite formalization of �temporary parthood� (something is part of something else
at a certain point or interval in time) omits any information about the time, as OWL only
supports binary predicates (a.k.a. �properties�). That leaves ambiguities for modeling a view
from DOLCE Lite to the �rst-order DOLCE, as such a view would have to reintroduce the
third (temporal) component of such predicates:

� Should a relation asserted in terms of DOLCE Lite be assumed to hold for all possible
points/intervals in time, i.e. should it be universally quanti�ed?

� Or should such a relation be assumed to hold for some points/intervals in time, i.e.
should it be existentially quanti�ed?

� Or should a concrete value for the temporal component be assumed, e.g. �0� or �now�?

DOL would support the formalization of all of these views and, given suitable consistency
checking tools, the analysis of whether any such view would satisfy all further axioms that
the �rst-order DOLCE states about temporal parthood.

J.4. Extending the OWL Time ontology to a more
comprehensive coverage of time

Status potential use case

Features Logical OMS mappings

The OWL Time ontology4 covers temporal concepts such as instants and intervals and has
been designed for describing the temporal content of Web pages and the temporal properties
of Web services. While OWL is suitable for these intended applications, only a �rst-order
axiomatization is capable of faithfully capturing all relevant notions, such as the trichotomy
of the �before� relation: One instant is either before another one, or at the same time, or after.
Moreover, a relationship between facts expressed in terms of instants and facts expressed in
terms of intervals (both of which is, independently, possible in OWL), can only be established
via �rst-order logic, e.g. by declaring an interval of length zero equivalent to an instant.
A separate �rst-order axiomatization of OWL Time exists [[28],[46]]. DOL would instead

provide the mechanism of modeling OWL Time as one coherent heterogeneous ontology, using
OWL and, e.g., Common Logic.95 For the temporal description logic DLRUS for knowl- Note(95)
edge bases and logic-based temporal conceptual data modeling [[1],[2]]; DLRUS combines the
propositional temporal logic with the Since and Until operators and the (non-temporal) de-
scription logic DLR and can be regarded as an expressive fragment of the �rst-order temporal
logic Lsince,until. Within DOL, this would enable one to have `lightweight' time aspects with
OWL Time, which are then properly formalized with DLRUS or a leaner variant TDL-Lite
[[4]], where notions such as (some time) �before� are given a formal semantics of the intended
meaning that the plain OWL Times human-readable object property does not have. The
latter, then, would enable the modeler to represent the meaning�hence, restrict the possi-
ble models�and check the consistency of the temporal constraints and so-called `evolution
constraints' in the ontology (evolution constraints constrain membership of an object or an
individual relation to a concept or relationship over time). For instance, that each divorcee

4http://www.w3.org/TR/2006/WD-owl-time-20060927/
95
Note: This is also a use case for multiple namespaces: OWL supports namespaces, CL doesn’t.
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must have been a participant in a marriage before, that boarding only may occur after check-
ing in, and that any employee must obtain a salary increase after two years of employment. It
also can be used to di�erentiate between essential and immutable parthood, therewith being
precise in the ontology about, e.g., the distinction how a human brain is part of a human
(humans cannot live without it), versus how a hand is part of a human (humans can live
without it), versus how the hand is part of, say, a boxer, which is essential to the boxer but
only for has long as he is a boxer [[3]].

J.5. Metadata in COLORE (Common Logic Repository)
Status exists (but not yet DOL-based)

Features Annotation, Metadata vocabularies

COLORE, the Common Logic Repository5 is an open repository of more than 150 ontologies
as of December 2011, all formalized in Common Logic. COLORE stores metadata about
its ontologies, which are represented using a custom XML schema that covers the following
aspects6, without specifying a formal semantics for them:

module provenance author, date, version, description, keyword, parent ontology7

axiom source provenance name, author, year8

direct relations maps (signature morphisms), de�nitional extension, conservative extension,
inconsistency between ontologies, imports, relative interpretation, faithful interpreta-
tion, de�nable equivalence

DOL provides built-in support for a subset of the �direct relations� and speci�es a formal
semantics for them. In addition, it supports the implementation of the remainder of the
COLORE metadata vocabulary as an ontology, reusing suitable existing metadata vocabu-
laries such as OMV, and it supports the implementation of one or multiple Common Logic
ontologies plus their annotations as one coherent library.

J.6. Extending OWL with datatypes defined in CASL
Status potential use case

Features ...

� OWL datatypes are in practice restricted to the XML Schema datatypes

� XML Schema can only specify the syntax of datatypes

� CASL can specify syntax (but not quite in the same way as XML Schema) and seman-
tics of datatypes

96 97 Note(96)

Note(97)5http://stl.mie.utoronto.ca/colore/
6http://stl.mie.utoronto.ca/colore/metadata.html
7Note that this use of the term �module� in COLORE corresponds to the term structured OMS in
this OMG Speci�cation

8Note that this may cover any sentences in the sense of this OMG Speci�cation
96
Note: TODO: ModuleRelDefn combined with approximation and RDF-based querying of annota-
tion/metadata dimensions

97
Note: TODO: Maybe have an(other?) appendix that refers to the usage of DOL within ontology engi-
neering methodologies, or at least to some good practices of using DOL
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K.1. Libraries
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K.2. Networks
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K.3. OMS

x
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K.4. OMS Definitions

x
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K.5. OMS Mappings

x
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K.6. Queries
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K.7. IRIs and Prefixes
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L.1. The Heterogeneous Tool Set (Hets)
The Heterogeneous Tool Set (Hets) is a parsing, analysis and proof tool for OMS, OMS
networks and OMS mappings written in DOL and DOL-conforming languages. It supports a
wide range of OMS languages and language translations, in particular OWL, RDF, Common
Logic, �rst-order logic and CASL. Support for MOF, UML class diagrams and state machines
is in preparation. Hets has been co-developed together with the DOL language presented
in this standard, and has been used to test the examples. Hets has been connected to
considerable number of proof tools like theorem provers, supporting various logics. Logics
that are not directly supported by any proof tool can be supported indirectly, through a logic
mapping into a tool-supported logic. 1

Hets is open source, licensed under GPLv2 or higher. The sources are available at the
following URL https://github.com/spechub/hets.

L.2. Ontohub, Modelhub, Spechub
Ontohub/Modelhub/Spechub is a repository engine for managing OMS, OMS networks and
OMS mappings written in DOL and DOL-conforming languages. It supports the same range
of OMS languages and language translations as Hets (indeed, Hets is used for analyzing DOL
�les).
Users of Ontohub/Modelhub/Spechub can upload, browse, search and annotate OMS in

various languages via a web frontend, see https://ontohub.org, https://model-hub.
org and https://spechub.org. Ontohub/Modelhub/Spechub is open source under GNU
AGPL 3.0 license, the sources are available at the following URL https://github.com/
ontohub/ontohub.
Ontohub/Modelhub/Spechub enjoys the following distinctive features:

� OMS can be organized in multiple repositories, each with its own management of editing
and ownership rights,

� private repositories are possible,

� version control of OMS is supported via interfacing the Git version control system,

� OMS can be edited both via the browser and locally with any editor (and in the latter
case pushed via Git); Git will synchronize both editing approaches,

� one and the same URL is used for referencing an OMS, downloading it (for use with
tools), and for user-friendly presentation in the browser (i.e. Ontohub/Modelhub/Spechub
is fully linked-data compliant)

1While the Hets parser should support the current version of DOL as presented in this standard, it
can happen that the most recent changes to the DOL syntax are not fully supported by the Hets
static analysis and proof support yet. This will be �xed in the future.
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� modular and heterogeneous OMS are specially supported,

� OMS can not only be aligned (as in BioPortal and NeOn), but also be combined along
alignments (using DOL's combine construct),

� logical relations between OMS (interpretation of theories, conservative extensions etc.)
are supported,

� support for a variety of OMS languages,

� OMS can be translated to other OMS languages, and compared with OMS in other
languages,

� heterogeneous OMS involving several languages can be built,

� OMS languages and OMS language translations are �rst-class citizens and are available
as linked data.

Ontohub/Modelhub/Spechub is not a repository, but a semantic repository engine. This
means that Ontohub/Modelhub/Spechub OMS are organized into repositories. The organi-
zation into repositories has several advantages:

� Firstly, repositories provide a certain structuring of OMS, let it be thematically or
organizational. Access rights can be given to users or teams of users per repository.
Typically, read access is given to everyone, and write access only to a restricted set
of users and teams. However, also completely open world-writeable repositories are
possible, as well as private repositories visible only to a restricted set of users and
teams. Since creation of repositories is done easily with a few clicks, this supports a
policy of many but small repositories (which of course does not preclude the existence
of very large repositories). Note that also structuring within repositories is possible,
since each repository is a complete �le system tree.

� Secondly, repositories are git repositories. Git is a popular decentralized version control
system. With any git client, the user can clone a repository to her local hard disk,
edit it with any editor, and push the changes back to Ontohub/Modelhub/Spechub.
Alternatively, the web frontend can be used directly to edit OMS; pushing will then be
done automatically in the background. Parallel edits of the same �le are synchronized
and merged via git; handling of merge con�icts can be done with git merge tools.

� Thirdly, OMS can be searched globally in Ontohub/Modelhub/Spechub, or in speci�c
repositories. Additionally, user-supplied metadata like categories, formality levels and
purposes can be used for searching.

Ontohub/Modelhub/Spechub is linked-data compliant. This means that OMS are ref-
erenced by a unique URL of the form https://ontohub.org/name-of-repository/
path-within-repository. Depending on the MIME type of the request, under this URL,
the raw OMS �le will be available, but also a HTML version for display in a browser, an XML
and a JSON version for processing with tools.

L.3. APIs
Both Hets and Ontohub/Modelhub/Spechub provide APIs for the interchange with other
tools. Ontohub/Modelhub/Spechub also provides an API for exchange with other instances,
so that e.g. Ontohub and Modelhub can exchange information about available repositories
and their OMS.
In the future, these APIs shall be aligned with OMG's standardization e�ort API4KB.
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