
E. Annex (informative): Conformance
of UML class and object diagrams
with DOL

This informative annex demonstrates conformance of UML class and object diagrams with
DOL by de�ning an institution for both. We concentrate on the static aspects of class
diagrams; that is, change of state is ignored. This means that all operations are query
operations.
The institution of UML class and object diagrams is de�ned using a translation of UML

class diagrams to Common Logic, following the fUML speci�cation and [49].
From the fUML speci�cation, section 10.3.1, we inherit the axioms for primitive types:

Booleans, numbers, sequences and strings. These axiomatize (among others) predicates cor-
responding to primitive types, e.g. buml:Boolean, form:Number, form:NaturalNumber,
buml:Integer, form:Sequence, form:Character, and buml:String.
We additionally need to axiomatize a number of predicates in Common Logic (note that

enumerations are not axiomatized in fUML):

(distinct) // the empty sequence is distinct
(distinct x) // singleton sequences are distinct
(iff (distinct x y ...) // recursion for length > 1

(and (not (= x y)) // the first two elements must be different
(distinct x ...) // and each of them distinct
(distinct y ...) )) // to the rest

(iff (exhaustive c ...) (forall (x) (if (c x) (oneof x ...))))
// does ... exhaust the extension of c?

(not (oneof x)) // is x among the remaining arguments?
(iff (oneof x y ...) (or (= x y) (oneof x ...)))
(iff (enumeration c ...) (and (exhaustive c ...) (distinct ...)))

// c is an enumeration type with values ...

// fuml:sequence - membership of an element in a sequence
(forall (x s)

(if (member x s)
(form:Sequence s)))

(forall (x s)
(iff (member x s)

(exists (pt)
(and (form:in-sequence s pt)

(form:in-position pt x)) )))
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Using this infrastructure, we obtain an institution for UML class diagrams as follows:73 Note(73)

Classi�er hierarchies. A classi�er hierarchy (C,≤C) is given by a partial order where
the set C contains the classi�er names, which are closed w.r.t. the built-in types Boolean,
UnlimitedNatural, Integer, Real, and String, i.e., {Boolean,UnlimitedNatural, Integer,Real, String} ⊆
C;74 and the partial ordering relation ≤C represents a generalisation relation on C, where we Note(74)
say that c1 is a sub-classi�er of c2 if c1 ≤C c2.
A classi�er hierarchy map γ : (C,≤C) → (D,≤D) is given by a monotone map from

(C,≤C) to (D,≤D), i.e., γ(c) ≤D γ(c′) if c ≤C c′, such that γ(c) = c for all built-in types
c ∈ {Boolean,UnlimitedNatural, Integer,Real, String}.
For each classi�er c ∈ C of a classi�er hierarchy (C,≤C) we use the classi�er annotations

OrderedSet, Set, Sequence, and Bag representing the meta-properties �ordered� and �unique�
according to the following table:

ordered not ordered

unique OrderedSet Set

not unique Sequence Bag

We write τ [c] for an annotated classi�er for τ ∈ {OrderedSet, Set, Sequence,Bag}. The
default is �not ordered� and �unique� (UML Superstructure Speci�cation 2.4.1, p. 96).

Classi�er nets (Signatures). A classi�er net Σ = ((C,≤C),K, P,M,A) comprises

� a classi�er hierarchy (C,≤C);

� a set K of instance speci�cations declarations of the form k : c with k an instance speci�-
cation name and c ∈ C;

� a set P of property declarations of the form c.p : τ [c′] with c, c′ ∈ C, τ a classi�er annotation,
and p a property name;

� a set M of composition declarations of the form c �r : τ [c′] with c, c′ ∈ C, τ a classi�er
annotation, and r a composition role name;

� and a set A of association declarations of the form a{r1 : c1, . . . , rn : cn} with n ≥ 2,
c1, . . . , cn ∈ C, a an association name, and r1, . . . , rn association role names,

such that the following properties are satis�ed:

� instance speci�cation names are unique: if k1 : c1 and k2 : c2 are di�erent instance speci�-
cation declarations in K, then k1 6= k2;

� property names are unique along the generalisation relation: if c1.p1 : τ1[c′1] and c2.p2 :
τ2[c′2] are di�erent property declararations in P and c1 ≤ c2, then p1 6= p2;

� composition role names are unique along the generalisation relation: if c1 �r1 : τ1[c′1] and
c2 �r2 : τ2[c′2] are di�erent composition declararations in M and c1 ≤ c2, then r1 6= r2;

� property and composition role names are unique along the generalisation relation: if c1.p1 :
τ1[c′1] is a property declaration in P and c2 �r2 : τ2[c′2] is a composition declaration in M
and c1 ≤C c2, then p1 6= r2; and if c1 �r1 : τ1[c′1] is a composition declaration in M and
c2.p2 : τ2[c′2] is a property declaration in P and c1 ≤C c2, then r1 6= p2;

� association role names are unique: if a{r1 : c1, . . . , rn : cn} is an association declaration in
A and 1 ≤ i 6= j ≤ n, then ri 6= rj ;

73
Note: AK: Added the following up to the next ed-note.

74
Note: what about enumeration types? Should we assume that some classifiers are marked as enu-
meration types and equipped with their set of constants?
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conradb
Sticky Note
composition is a characteristic of properties.  The "role" name here is the property name (UML class diagrams don't use the term "role").

conradb
Sticky Note
Associations can have non-composite properties on their ends (they are called "member ends").

conradb
Sticky Note
Instance specs aren't typically in class diagrams.  You could omit them for simplicity (unless you need UML enumerations, they use instance specs).

conradb
Sticky Note
Would help to say this is specifically for typing properties (avoids seeming like the annotation should be on properties).
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Figure E.1.: Sample UML class diagram.

� composition declarations are cycle-free: if c1 �r1 : τ2[c2], . . . , cn �rn : τn+1[cn+1] ∈ M , then
cn+1 6= c1.

A classi�er net morphism σ = (γ, κ, π, µ, α) : Σ = ((C,≤C),K, P,M,A)→ T = ((D,≤D),
L,Q,N,B) is given by

� a classi�er hierarchy map γ : (C,≤C)→ (D,≤D);

� an instance speci�cation map κ : K → L such that if κ(k : c) = l : d ∈ L, then d = γ(c);

� a property declaration map π : P → Q such that if π(c.p : τ [c′]) = d.q : τ ′[d′] ∈ Q, then
d = γ(c), d′ = γ(d′), and τ = τ ′;

� a composition declaration map µ : M → N such that if µ(c �r : τ [c′]) = d �s : τ ′[d′] ∈ M ,
then d = γ(c), d′ = γ(d′), and τ = τ ′;

� an association declaration map α : A → B such that if α(a{r1 : τ1[c1], . . . , rn : τn[cn]}) =
b{s1 : τ ′1[d1], . . . , sm : τ ′m[dm]} ∈ B, then there is a bijective map ρ : {r1, . . . , rn} →
{s1, . . . , sm} with dj = γ(ci) and τj = τ ′i if ρ(ri) = sj .

Classi�er nets as objects and classi�er net morphisms as morphisms form the category of
classi�er nets, denoted by Cl.

Example For the class diagram in Fig. E.1 we have

Classi�ers: Net, Station, Line,Connector,Unit,Track,Point, Linear

Generalisations: Point ≤ Unit, Linear ≤ Unit

Properties: Line.linear : Set[Boolean],Track.linear : Set[Boolean]

Compositions: Station �unit : Set[Unit], Station �track : Set[Track],

Net �station : Set[Station],Net � line : Set[Line]
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conradb
Sticky Note
Need to use different names for "has" in each case. 

Remove attribute visibility markers.

conradb
Sticky Note
The acyclic composition restriction in UML is semantic, rather than syntactic.  UML class models can have composition cycles as long as the y are not instantiated (mapped to UoD) in such a way as to cause cycles among the instances.
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Associations: has{line : Set[Line], linear : Set[Linear]},
has{track : Set[Track], linear : Set[Linear]},
has{connector : Set[Connector], unit : Set[Unit]}

Multiplicity constraints. The set of multiplicity formulae Frm is given by the following
grammar:

Frm ::= NumLiteral ≤ FunExpr | FunExpr ≤ NumLiteral | Composition !
FunExpr ::= # Composition | # Association [ Role (, Role)∗ ]

Composition ::= Classifier �Role : Annot [ Classifier ]
Association ::= Name{Role : Annot [ Classifier ](, Role : Annot [ Classifier ])∗}

Classifier ::= Name
Role ::= Name

Annot ::= OrderedSet | Set | Sequence | Bag
NumLiteral ::= 0 | 1 | · · ·

where Name is a set of names.
The set of Σ-multiplicity constraints Mult(Σ) for a classi�er net Σ is given by the mul-

tiplicity formulae in Frm such that all mentioned elements of Composition and Association
correspond to composition declarations and association declarations of Σ, respectively, and
the role names mentioned in the last clause of FunExpr occur in the mentioned association.
The translation of a formula ϕ ∈ Mult(Σ) along a classi�er net morphism σ, written as σ(ϕ),
is given by applying σ to compositions, associations, and role names.

Example For the class diagram in Fig. E.1 we have

2 ≤ #Net �station : Set[Station]

Net �station : Set[Station] !

Net � line : Set[Line] !

Station �unit : Set[Unit] !

Station �track : Set[Track] !

1 ≤ #has{connector : Set[Connector], unit : Set[Unit]}[unit]
#has{connector : Set[Connector], unit : Set[Unit]}[unit] ≤ 4

#has{connector : Set[Connector], unit : Set[Unit]}[connector] = 1

1 ≤ #has{track : Set[Track], linear : Set[Linear]}[track]

#has{track : Set[Track], linear : Set[Linear]}[linear] = 1

1 ≤ #has{line : Set[Line], linear : Set[Linear]}[line]
#has{line : Set[Line], linear : Set[Linear]}[linear] = 1

where we write �=� as an abbreviation for two inequations using �≤�.
For a classi�er net Σ = ((C,≤C),K, P,M,A), we de�ne a Common Logic theory CL(Σ)

consisting of:

� for c ∈ C, a predicate1 CL(c), such that75 Note(75)

1Strictly speaking, this is just a name.
75
Note: class predicates should be restricted to be unary
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conradb
Sticky Note
See comments above about composition and associations ends.
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� CL(Boolean) = buml:Boolean,

� CL(String) = buml:String,

� CL(Integer) = buml:Integer,

� CL(UnlimitedNatural) = form:NaturalNumber,

� CL(Real) = buml:Real,

� CL(c) = c, if c is an enumeration type with values k1, . . . , kn. Additionally, the
Common Logic theory is augmented by (enumeration c k1 · · · kn),76 Note(76)

� CL(List[c]) = form:Sequence77, Note(77)
� CL(Set[c]) =???78, Note(78)
� CL(OrderedSet[c]) =???79,

Note(79)
� CL(Bag[c]) =???80,

Note(80)
� for each relation c1 ≤C c2, an axiom (forall (x) (if (C1 x) (C2 x))), where
C1= CL(c1), C2= CL(c2),

� CL maps each instance speci�cation declaration k : c ∈ K to constant CL(k) and an
axiom (c k), where by abuse of notation, we identify c with CL(c), and k with (CL(k))
(this abuse of notation will also be used in the sequel);

� for the set of instance speci�cations k1 : c1, . . . , kn : cn an axiom (different k1 · · ·
kn) (the unique name assumption);

� CL maps each property declaration c.p(x1 : c1, . . . , xn : cn) : τ [c′] ∈ P to a predicate
CL(c.p) and axioms stating type-correctness and functionality:

� (forall (x x1 x2 · · · xn y) (if (c.p x x1 x2 · · · xn y) (c x)))

� (forall (x x1 x2 · · · xn y) (if (c.p x x1 x2 · · · xn y) (ci xi))) for
each i = 1 . . . n,2

� (forall (x x1 x2 · · · xn y) (if (c.p x x1 x2 · · · xn y) (τ [c′] y)))

� (forall (x x1 x2 · · · xn y m)
x (if (and (c.p x x1 x2 · · · xn y) (member m y)) (c’ m)))

� (forall (x x1 x2 · · · xn)
x (exists (y) (c.p x x1 x2 · · · xn y)))

� (forall (x x1 x2 · · · xn y z)
x (if (and (c.p x x1 x2 · · · xn y) (c.p x x1 x2 · · · xn z))
x x (= y z)))

� CL maps each composition declaration c �r : τ [c′] ∈M to a predicate CL(r) and axioms
(forall (x) (if (c x) (exists (y) (and (r x y) (τ[c’] y)))))
(forall (x y) (if (r x y) (and (c x) (τ[c’] y))))
(forall (x y z) (if (and (r x y) (r x z)) (= y z)))

76
Note: Ed Seidewitz: enumerations are specializable, but this is type-unsafe, so maybe omit it

77
Note: UML has typed sequences, but fUML appaerantly not. How do we solve this problem?

78
Note: UML has sets, but fUML appaerantly not. Do we want to provide our own specification of sets in
Common Logic?

79
Note: UML has ordered sets, but fUML appaerantly not. Do we want to provide our own specification
of ordered sets in Common Logic?

80
Note: UML has bags, but fUML appaerantly not. Do we want to provide our own specification of bags
in Common Logic?

2Note that the · · · here is meta notation, not a sequence marker!
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conradb
Sticky Note
Generalization in UML isn't type safe either (in the sense of programming languages), though it is in your formalization.  The annex could formalize enumerations in a type safe way as it does for generalization.

conradb
Sticky Note
fUML only supports sequences?

conradb
Sticky Note
member only applies to sequences.


conradb
Sticky Note
UML operation parameters have multiplicities.
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� for any pair of composition declarations c1 �r1 : c′1 and c2 �r2 : c′2, an axiom stating
�each instance has at most one owner�:
(forall (x1 x2 y1 y2) (if (and (r1 x1 y1) (r2 x2 y2))
x (exists (z) (and (member z x1) (member z x2)))))

� CL maps each association declaration a(r1 : c1, . . . , rn : cn) ∈ A to a predicate CL(a)
and an axiom
(forall (x1 x2 · · · xn) (if (a x1 x2 · · · xn) (and (c1 x1) · · · (cn xn)))))

3

It is straightforward to extend CL from signatures to signature morphisms.

Models. A Σ-model of the UML class diagram institution is just a CL(Σ)-model in Common
Logic. That is, the UML class diagram institution inherits models from Common Logic.
Moreover, model reducts are inherited as well, using the action of CL on signature morphisms.

Multiplicity formulae � Sentences. 81 82 83 For the sentences of the UML class diagram Note(81)

Note(82)

Note(83)

institution we use multiplicity formulae de�ned by the following grammar:

Frm ::= NumLit ≤ FunExpr | FunExpr ≤ NumLit | Composition !
FunExpr ::= # Composition | # Association [ Role(, Role)∗ ]

Composition ::= Class �Role : Class
Association ::= Name{Role : Class(, Role : Class)∗}

Class ::= Name
Role ::= Name

NumLit ::= 0 | 1 | · · ·

where Name is a set of strings. The ≤-formulae express constraints on the cardinalities of
composition and association declarations, i.e., how many instances are allowed to be in a
certain relation with others. The #-expressions return the number of links in an associa-
tion when some roles are �xed. The !-formulae for compositions express that the owning
end must not be empty. The set of sentences or Σ-multiplicity constraints Mult(Σ) for a
class net Σ is given by the multiplicity formulae in Frm such that all mentioned elements of
Composition and Association correspond to composition declarations and association decla-
rations of Σ respectively, and the Role names mentioned in the last clause of FunExpr occur
in the mentioned association.

Example Some of the cardinality constraints of the running example in Fig. E.1 can be
expressed with multiplicity formulae as follows:

Station �has : Track !

� each Track is owned by a Station via has,

2 ≤ #has(connector : Connector, unit : Unit)[unit]

� association has links each Unit to at least two Connectors,

#state(unitState : UnitState, unit : Unit)[unit] = 1

� association state links each Unit to exactly one UnitState.

3 Ignoring the annotations τi in the interpretation of an association is intentional, see the semantics
of associations in the UML Superstructure Speci�cation 2.4.1, p. 37.

81
Note: Ed Seidewitz: Multiplicities are different for associations and for properties, this is a bit tricky.
Associations are predicates of single values, whereas properties can be over sets etc. Aexander: we
need to correct the representation for compositions used in associations.

82
Note: missing: relations between properties, e.g. subsets, unions

83
Note: derived associations: one association is the composition of two others
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conradb
Sticky Note
Looks like a constraint between arbitrary compositions (x1/y1 and x2/y2).

conradb
Sticky Note
Multiplicities on associations are actually on the properties at the ends of the associations.  Associations don't have multiplicities by themselves.

conradb
Sticky Note
Derivation is more general.  Logical composition is for the semantics of connectors, which aren't in class diagrams.
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Note we have used formulae with = instead of two formulae with ≤ where the left hand side
and the right hand side are switched.2
The translation of a formula ϕ ∈ Mult(Σ) along a class net morphism σ = (γ, κ, π, µ, α) :

Σ→ T, written as σ(ϕ), is given by applying σ to compositions, associations, and role names.

Satisfaction relation. The satisfaction relation is inherited from Common Logic, using a
translation CL(_) of multiplicity formulas to Common Logic. That is, given a UML class
and object diagram Σ, a multiplicity formula ϕ and a Σ-model M (the latter amounts to a
CL(Σ)-model M in Common Logic), we de�ne

M |=Σ ϕ i� M |=CL(Σ) CL(ϕ)

The translation of multiplicity formulas to Common Logic is as follows:

� CL(` ≤ #c �r : c′) =
(forall (x y n)
x (if (and (r x y) (form:sequence-length y n)) (leq J`K n))

� CL(` ≤ #c �r : c′) =
(forall (x y n)
x (if (and (r x y) (form:sequence-length y n)) (geq J`K n))

� CL(c �r : c′!) = (forall (y) (if (c’ y) (exists (x) (and (c x) (r x y)))))

� CL(` ≤ #a(r1 : c1, . . . , rn : cn)[ri1 , . . . , rim ] =
(forall (xi1 · · · xim)

(if (and (ci1 xi1) · · · (cim xim))
((min-card-tuple a xi1 · · · xim) seli1 · · · selin)))

� CL(#a(r1 : c1, . . . , rn : cn)[ri1 , . . . , rim ] ≤ ` =
(forall (xi1 · · · xim)

(if (and (ci1 xi1) · · · (cim xim))
((max-card-tuple a xi1 · · · xim) seli1 · · · selin)))

where J−K : NumLit → Z maps a numerical literal to an integer.84 Note(84)

84
Note: the last two items need adaption
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conradb
Sticky Note
Where are min/max-card-tuple defined?

conradb
Sticky Note
An owner is only required on an individual if it's classifier is the type of a composite property, and the inverse of that property has a minimum multiplicity of one.




