Motivation

The Distributed Ontology, Modeling and Specification Language (DOL) Language overview

Till Mossakowski1Oliver Kutz1Christoph Lange2Mihai Codescu1

¹University of Magdeburg ²University of Bonn

OntolOp telecon, 2014-09-09

Mossakowski

Distributed Ontology, Modeling and Specification Language (DOL)

2014-09-09 1

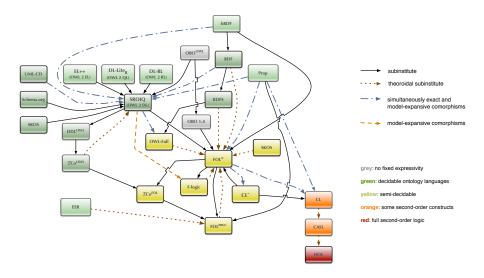
Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion

Motivation

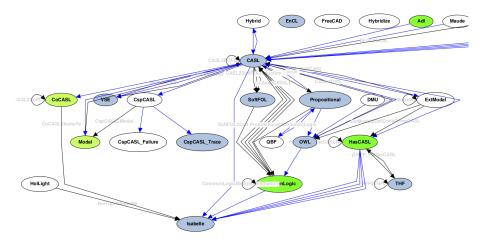
Mossakowski

Distributed Ontology, Modeling and Specification Language (DOL)

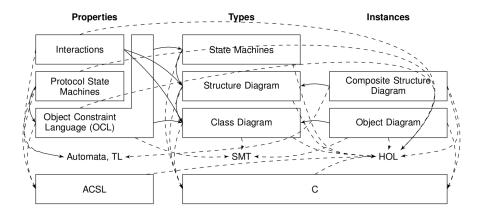
2014-09-09 2


Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
The Big	Picture	ofInte	eroperabilit	y	

Modeling	Specification	Knowledge engineering
Objects/data	Software	Concepts/data
Models	Specifications	Ontologies
Metamodels	Specification languages	Ontology languages


Diversity and the need for interoperability occur at all these levels! (Formal) ontologies, (formal) models and (formal) specifications will henceforth be abbreviated as OMS.

3



5

Motivation: Diversity of Operations on and Relations among OMS

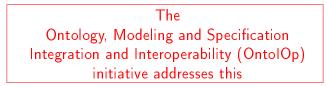
Various operations and relations on OMS are in use:

- structuring: union, translation, hiding, ...
- refinement
- matching and alignment
 - of many OMS covering one domain
- module extraction
 - get relevant information out of large OMS
- approximation
 - model in an expressive language, reason fast in a lightweight one
- ontology-based database access/data management
- distributed OMS
 - bridges between different modellings

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion

OntolOp

Mossakowski


Distributed Ontology, Modeling and Specification Language (DOL)

Motivation OntolOp DOL Focused OMS Distributed OMS Conclusi Need for a Unifying Meta Language

Not yet another OMS language, but a meta language covering

- diversity of OMS languages
- translations between these
- diversity of operations on and relations among OMS

Current standards like the OWL API or the aligment API only cover parts of this

- $\bullet\,$ started in 2011 as ISO 17347 within ISO/TC 37/SC 3
- now continued as OMG standard
 - OMG has more experience with formal semantics
 - OMG documents will be freely available
 - focus extended from ontologies only to formal models and specifications (i.e. logical theories)
 - request for proposals (RFP) has been issued in December 2013
 - proposals answering RFP due in December 2014
- $\bullet~$ 50 experts participate, $\sim~$ 15 have contributed
- OntolOp is open for your ideas, so join us!
- Distributed Ontology, Modeling and Specification Language
 - DOL = one specific answer to the RFP requirements
 - there may be other answers to the RFP
 - DOL is based on some graph of institutions and (co)morphisms
 - DOL has a model-level and a theory-level semantics

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion

DOL

Mossakowski

Distributed Ontology, Modeling and Specification Language (DOL)

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
Overvie	w of DC)L			

Focused OMS

- basic OMS (flattenable)
- references to named OMS
- extensions, unions, translations (flattenable)
- reductions (elusive)
- approximations, module extractions (flattenable)
- minimization, maximization (elusive)
- combination, OMS bridges (flattenable)

only OMS with flattenable components are flattenable flattenable = can be flattened to a basic OMS $\$

- Oistributed OMS (based on focused OMS)
 - OMS definitions (giving a name to an OMS)
 - interpretations (of theories), equivalences
 - module relations
 - alignments

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion

Focused OMS

Mossakowski

Distributed Ontology, Modeling and Specification Language (DOL)

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
Basic0MS	::= 0MSI	nConformin	aLanguage		
			Ref [ImportName]		
Extending0MS	::= Mini	nizableOMS			
5			yword '{' Minimiz	ableOMS '}'	
	i i	OMS Extrac	tion		
OMS	::= Exte	nding0MS			
		OMS Minimi			
		OMS Transl			
		OMS Reduct			
	•	OMS Approx			
		OMS Filter	5	~	
			[ConsStrength] OM	5	
			ExtensionOMS ion* ':' GroupOMS		
			e' Translation* 0		
			GraphElements [Ex		
			bstName Sentence	e cuueexcensions j	
Group0MS		'{' OMS '}			
ImportName		'%(' IRI '			
-					

- written in some OMS language from the logic graph
- semantics is inherited from the OMS language
- e.g. in OWL:

Class: Woman EquivalentTo: Person and Female
ObjectProperty: hasParent

• e.g. in Common Logic:

Motivation	OntolOp	DOL For	used OMS	Distributed OMS	Conclusion
ExtensionOMS	-] [ExtensionNam	ne] ExtendingOMS	
ExtensionName	::= '	'%(' IRI ')%'			

O₁ then O₂: extension of O₁ by new symbols and axioms O₂
example in OWL:

Class Person Class Female

then

Class: Woman EquivalentTo: Person and Female

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
ExtensionOMS ConsStrength			ngth] [ExtensionN '%mono' '%wd	ame] ExtendingOMS ef' '%def'	
ExtConsStrer Conservative	5	onsStrength %ccons' '	'%implied' %mcons'		
ExtensionNar	ne ::= '	%('IRI ')%	,		

Motivation OntolOp DOL Focused OMS Distributed OMS Conclusion Extensions with annotations

- O_1 then %mcons O_2 : model-conservative extension
 - each O_1 -model has an expansion to O_1 then O_2
- O_1 then %ccons O_2 : consequence-conservative extension
 - \mathcal{O}_1 then $\mathcal{O}_2\models arphi$ implies $\mathcal{O}_1\models arphi$, for arphi in the language of \mathcal{O}_1
- O_1 then %def O_2 : definitional extension
 - each O_1 -model has a unique expansion to O_1 then O_2
- O₁ then %implies O₂: like %mcons, but O₂ must not extend the signature
- example in OWL:

Class Person **Class** Female

then %def

Class: Woman EquivalentTo: Person and Female

- Reference to an OMS existing on the Web
- written directly as a URL (or IRI)
- Prefixing may be used for abbreviation

http://owl.cs.manchester.ac.uk/co-ode-files/
ontologies/pizza.owl

co-ode:pizza.owl

Semantics Reference to Named OMS: $[iri]_{\Gamma} = \Gamma(iri)$

- O₁ and O₂: union of two stand-alone OMS (for extensions O₂ needs to be basic)
- Signatures (and axioms) are united
- model classes are intersected

algebra:Monoid and algebra:Commutative

	n OntolOp DOL Focused OMS	S Conclusion
Translation ::= 'with' LogicTranslation* [SymbolMapItems] SymbolMapItems ::= SymbolOrMap (',' SymbolOrMap)* LogicTranslation ::= 'translation' OMSLangTrans SymbolMap ::= Symbol '\$\mapsto\$' Symbol SymbolOrMap ::= Symbol SymbolMap LoLaRef ::= LanguageRef LogicRef OMSLangTrans ::= OMSLangTransRef '<\$\to\$>' LoLaRef OMSLangTransRef ::= IRI	ation ::= 'with' LogicTranslation* [Sy MapItems ::= SymbolOrMap (',' SymbolOrMa ranslation ::= 'translation' OMSLangTrans Map ::= Symbol '\$\mapsto\$' Symbol OrMap ::= Symbol SymbolMap f ::= LanguageRef LogicRef gTrans ::= OMSLangTransRef '<\$\to\$>'	

- **O** with σ , where σ is a signature morphism
- O with translation ρ , where ρ is an institution comorphism

ObjectProperty: isProperPartOf Characteristics: Asymmetric SubPropertyOf: isPartOf with translation trans:SROIQtoCL then

(if (and (isProperPartOf x y) (isProperPartOf y z)) (isProperPartOf x z))

%% transitivity; can't be expressed in OWL together
%% with asymmetry

Motivation OntolOp DOL Focused OMS Distributed OMS Conclusion

Hide – Extract – Forget – Filter

	hide/reveal	remove/extract	forget/keep	filter
semantic	model	conservative	uniform	theory
background	reduct	extension	interpolation	difference
relation to original	interpretable	subtheory	interpretable	subtheory
approach	model level	theory level	theory level	theory level
type of OMS	elusive	flattenable	flattenable	flattenable
signature of result	$=\Sigma$	$\geq \Sigma$	$=\Sigma$	$=\Sigma$
change of logic	possible	not possible	possible	not possible
application	specification	ontologies	ontologies	blending

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
Reduction	::=	'hide' Log	icReduction* [Sym	nbolItems]	
	1	'reveal' [SymbolMapItems]	-	
SymbolItems			,' Symbol)*		
LogicReducti	.on ::=	'along' OM	SLangTrans		

- intuition: some logical or non-logical symbols are hidden, but the semantic effect of sentences (also those involving these symbols) is kept
- *O* reveal Σ , where Σ is a subsignature of that of *O*
- *O* hide Σ , where Σ is a subsignature of that of *O*
- O hide along μ , where μ is an institution morphism

Motivation OntolOp DOL Focused OMS Distributed OMS Conclusion Reduction: example

hide inv

Semantics: class of all monoids that can be extended with an inverse, i.e. class of all groups. The effect is second-order quantification:

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
Extraction			ModuleProperties	InterfaceSignature	

Extraction	::= 'extract' ModuleProperties InterfaceSignature				
	'remove' ModuleProperties InterfaceSignature				
ModuleProperties	<pre>::= Conservative '%min' '%depliting' '%safe'</pre>				
InterfaceSignature	::= SymbolItems				
SymbolItems	::= Symbol (',' Symbol)*				

$O \text{ extract } \Sigma$

- Σ : restriction signature (subsignature of that of O)
- *O* must be a conservative extension of the resulting extracted module. (If not, the module is suitably enlarged.)
- Dually: O remove Σ
- Note: The extraction methods from the literature all guarantee model-theoretic conservativity.

MotivationOntolOpDOLFocused OMSDistributed OMSConclusionModule Extraction:examplesort Elemops 0:Elem;__+__:Elem*Elem->Elem;inv:Elem->Elemforall x,y,z:elem.0+x=x. x+(y+z) = (x+y)+z

$$x+inv(x) = 0$$

remove inv

The semantics is the following theory:

The module needs to be enlarged to the whole OMS.

Mossakowski

MotivationOntolOpDOLFocused OMSDistributed OMSConclusionModule Extraction:2nd examplesort Elemops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elemforall x,y,z:elem0+x=x. x+(y+z) = (x+y)+z. x+inv(x) = 0

```
. exists y:Elem . x+y=0
```

remove inv

The semantics is the following theory:

Here, adding inv is conservative.

Mossakowski

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
Approximat		5		['with' LogicRef]	

Approximation	<pre>::= 'forget' InterfaceSignature ['with' LogicRef]</pre>
	'keep' InterfaceSignature ['with' LogicRef]
InterfaceSignature	::= SymbolItems
SymbolItems	::= Symbol (',' Symbol)*

- O keep in Σ , where Σ is a subsignature of that of O
- O keep in Σ with I, where Σ is a subsignature of that of O, and I is a subinstitution of that of O
 - intuition: theory of O is interpolated in smaller signature/logic
- dually
 - O forget Σ
 - O forget Σ with /

Motivation OntolOp DOL Focused OMS Distributed OMS Conclusion

forget inv

The semantics is the following theory:

Computing interpolants can be hard, even undecidable.

Mossakowski

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion

Filtering ::= 'filter' BasicOMS

Mossakowski

Distributed Ontology, Modeling and Specification Language (DOL)

- O filter T, where T is a subtheory (fragment) of that of O
 intuition: all axioms involving symbols in Sig(T) are deleted
 - $\bullet\,$ moreover, all axioms contained in $\,{\cal T}\,$ are deleted as well
- A dual notion does not make much sense (indeed, just T would be delivered).

sort Elem ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem forall x,y,z:elem . 0+x=x

$$x+(y+z) = (x+y)+z$$

$$x+inv(x) = 0$$

filter inv

The semantics is the following theory:

 Motivation OntolOp DOL Focused OMS Distributed OMS Conclusion

Hide – Extract – Forget – Filter

	hide/reveal	remove/extract	forget/keep	filter
semantic	model	conservative	uniform	theory
background	reduct	extension	interpolation	difference
relation to original	interpretable	subtheory	interpretable	subtheory
approach	model level	theory level	theory level	theory level
type of OMS	elusive	flattenable	flattenable	flattenable
signature of result	$=\Sigma$	$\geq \Sigma$	$=\Sigma$	$=\Sigma$
change of logic	possible	not possible	possible	not possible
application	specification	ontologies	ontologies	blending

$Mod(O hide \Sigma)$

- $= Mod(O \text{ extract } \Sigma)|_{Sig(O) \setminus \Sigma}$
- \subseteq Mod(O forget Σ)
- \subseteq *Mod*(*O* filter Σ)

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
Pros an	d Cons				

	hide/reveal	remove/extract	forget/keep	filter
information	none	none	minimal	large
loss				
computability	bad	good/depends	depends	easy
signature of	$=\Sigma$	$\geq \Sigma$	$=\Sigma$	$=\Sigma$
result				
change of	possible	not possible	possible	not
logic				possible
conceptual	simple	complex	farily	simple
simplicity	(but		simple	
	unintuitive)			

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
Minimizatio MinimizeKey	/word ::= 	MinimizeKeywo 'minimize' 'closed-world 'maximize' 'free' 'cofree'		[CircVars]	
CircMin CircVars		Symbol Symbol 'vars' (Symbo			

Focused OMS Distributed OMS Conclusion Minimizations (circumscription) • O_1 then minimize { O_2 } • forces minimal interpretation of non-logical symbols in O_2 **Class:** Block **Individual**: B1 **Types**: Block Individual: B2 Types: Block DifferentFrom: B1 then minimize { **Class:** Abnormal **Individual**: B1 **Types**: Abnormal } then **Class:** Ontable Class: BlockNotAbnormal EquivalentTo: Block and not Abnormal SubClassOf: Ontable then %implied Individual: B2 Types: Ontable

• O_1 then free { O_2 }

• forces initial interpretation of non-logical symbols in O_2

```
sort Elem
then free {
    sort Bag
    ops mt:Bag;
    __union__:Bag*Bag->Bag, assoc, comm, unit mt
    }
```


• O_1 then cofree { O_2 }

• forces final interpretation of non-logical symbols in O_2

```
sort Elem
then cofree {
    sort Stream
    ops head:Stream->Elem;
        tail:Stream->Stream
    }
```

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion

Distributed OMS

Mossakowski

Distributed Ontology, Modeling and Specification Language (DOL)

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
Dist0MS			DistOMSDefn		
			mingLanguage		
DistOMSDefn			d OMS' DistOMSNa		
OMSInConform	ningLanguage	::= (\$<\$)	language and ser	ialization speci	fic (\$>\$)
DistOMSItem	::=	OMSDefn M	appingDefn Qua	lification	
Qualificatio	on ::=	LanguageQua	l LogicQual	SyntaxQual	
LanguageQual	. ::=	'language'	LanguageRef		
LogicQual	::=	'logic' Log	icRef		
SyntaxQual	::=	'serializat	ion' SyntaxRef		
DistOMSName	::=	IRI			
PrefixMap	::=	'%prefix('	<pre>PrefixBinding* '</pre>)%'	
PrefixBindir	ng ::=	BoundPrefix	IRIBoundToPrefi	х	
BoundPrefix	::=	':' Prefi	х		
0MSkeyword	::=	'ontology'			
	1	'onto'			
	Í	'specificat	ion'		
	l l	'spec'			
	i	'model'			
OMSDefn	::=	0MSkeyword	OMSName '=' [Con	sStrength] OMS ['end']

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
OMS d	efinition	S			

• OMS IRI = O end

• assigns name IRI to OMS O, for later reference $\Gamma(IRI) := \llbracket O \rrbracket_{\Gamma}$

ontology co-code:Pizza = Class: VegetarianPizza Class: VegetableTopping ObjectProperty: hasTopping ...

end

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
MappingDefn		IntprDefn EquivDefn ModuleRelDe AlignDefn	fn		
IntprDefn	::= 	['end'] IntprKeywor	d IntprName [Co d IntprName [Co anslation* [Sym	nservative] ':'	
IntprKeyword			tion' 'view'		
IntprName	::=	IRI			

IntprType ::= GroupOMS 'to' GroupOMS

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
Interpre	etations				

- interpretation Id : O_1 to $O_2 = \sigma$
- $\bullet~\sigma$ is a signature morphism or a logic translation
- expresses that O_2 logically implies $\sigma(O_1)$

interpretation i : TotalOrder to Nat = Elem \mapsto Nat interpretation geometry_of_time %mcons :

- %% Interpretation of linearly ordered time intervals. int:owltime_le
- %% ... that begin and end with an instant as lines %% that are incident with linearly ...

to { ord:linear_ordering and bi:complete_graphical

%% ... ordered points in a special geometry, ...

and int:mappings/owltime_interval_reduction }

= ProperInterval \mapsto Interval end

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
0MS0rMappi	ngorGraphRef	:= IRI			
GraphEleme		•	ent (',' GraphElen		
GraphEleme	nt ::=	[Id ':'] C)MSOrMappingorGraph	nRef	

ExcludeExtensions ::= 'excluding' ExtensionRef (',' ExtensionRef)*

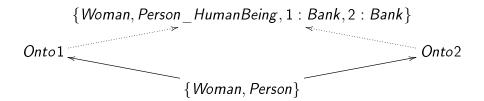
Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
Graphs	(diagrai	ms)			

graph G = $G_1, ..., G_m, O_1, ..., O_n, M_1, ..., M_p$ excluding $G'_1, ..., G'_i, O'_1, ..., O'_j, M'_1, ..., M'_k$

- G_i are other graphs
- O_i are OMS (possibly prefixed with labels, like n: O)
- *M_i* are mappings (views, interpretations)

- combine G
- G is a graph
- semantics is the (a) colimit of the diagram G

ontology AlignedOntology1 = combine G


There is a natural semantics of diagrams: compatible families of models.

Then in exact institutions, models of diagrams are in bijective correspondence to models of the colimit.

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
Sample	combin	ation			

```
ontology Source =
 Class: Person
 Class: Woman SubClassOf: Person
ontology Ontol =
 Class: Person Class: Bank
 Class: Woman SubClassOf: Person
interpretation I1 : Source to Onto1 =
   Person |-> Person, Woman |-> Woman
ontology Onto2 =
 Class: HumanBeing Class: Bank
 Class: Woman SubClassOf: HumanBeing
interpretation I2 : Source to Onto2 =
   Person |-> HumanBeing, Woman |-> Woman
ontology CombinedOntology =
  combine Source, Onto1, Onto2, I1, I2
```



```
Focused OMS
                                                      Distributed OMS
AlignDefn
                   ::= 'alignment' AlignName [AlignCards] ':'
                       ['end']
                     'alignment' AlignName [AlignCards] ':'
                       '=' Correspondence ( ',' Correspondence )*
AlignName
                   ::= IRI
AlignCards
                   ::= AlignCardForward AlignCardBackward
AlignCardForward
                   ::= AlignCard
AlignCardBackward ::= AlignCard
AlignCard
                   ::= '1' | '?' | '+' | '*'
                   ::= GroupOMS 'to' GroupOMS<\CLnote[type=q-aut]{would it make s
AlignType
Correspondence
                   ::= CorrespondenceBlock | SingleCorrespondence | '*'
CorrespondenceBlock ::= 'relation' [RelationRef] [Confidence] '{'
                        ( ',' Correspondence )* '}'
SingleCorrespondence ::= SymbolRef [RelationRef] [Confidence]
                         [CorrespondenceId]
CorrespondenceId
                   ::= '%(' IRI ')%'
SymbolRef
                   ::= TRT
TermOrSymbolRef
                   ::= Term | SymbolRef
RelationRef
                   ::= '<\greaterthan>' | '<\lessthan>'
                       '=' | '%'
                      '$\ni$' | '$\in$'
                       '$\mapsto$' | IRI
Confidence
                   ::= Double
Double ::= ($<$ a number $\in [0,1]$ $>$)
```


- alignment *Id* card₁ card₂ : O₁ to O₂ = c₁,... c_n assuming SingleDomain | GlobalDomain | ContextualizedDomain
- card; is (optionally) one of 1, ?, +, *
- the c_i are correspondences of form sym_1 rel conf sym_2
 - sym_i is a symbol from O_i
 - rel is one of >, <, =, %, \ni , \in , \mapsto , or an Id
 - conf is an (optional) confidence value between 0 and 1

Syntax of alignments follows the alignment API http://alignapi.gforge.inria.fr

alignment Alignment1 : { Class: Woman } to { Class: Person } =
 Woman < Person
and</pre>

end

- ontology S = Class: Person
 Individual: alex Types: Person
 Class: Child
- ontology T = Class: HumanBeing Class: Male SubClassOf: HumanBeing Class: Employee

alignment A : S to T =
 Person = HumanBeing
 alex in Male
 Child < not Employee
 assuming GlobalDomain</pre>

graph G =

 $G_1,\ldots,G_m,O_1,\ldots,O_n,M_1,\ldots,M_p,A_1,\ldots,A_r$ **excluding** $G'_1, \ldots, G'_i, O'_1, \ldots, O'_i, M'_1, \ldots, M'_k$

- G_i are other graphs
- O_i are OMS (possibly prefixed with labels, like n : O)
- *M*; are mappings (views, equivalences)
- A; are alignments

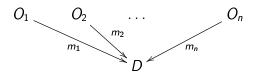
The resulting diagram G includes (institution-specific) W-alignment diagrams for each alignment A_i . Using **assuming**, assumptions about the domains of all OMS can be specified:

SingleDomain aligned symbols are mapped to each other GlobalDomain aligned OMS a relativized

ContextualizedDomain alignments are reified as binary relations

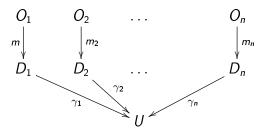
Mossakowski

where


ontology B = Class: Person_HumanBeing Class: Employee Class: Child SubClassOf: ¬ Employee Individual: alex Types: Male

The colimit ontology of the diagram of the alignment above is:

ontology B = Class: Person_HumanBeing Class: Employee Class: Male SubClassOf: Person_HumanBeing Class: Child SubClassOf: ¬ Employee Individual: alex Types: Male, Person_HumanBeing Motivation OntolOp DOL Focused OMS Distributed OMS Conclusion Background Simple semantics of diagrams


Framework: institutions like OWL, FOL, ... Ontologies are interpreted over the same domain

- model for A: (m₁, m₂) such that m₁(s) R m₂(t) for each s R t in A
- model for a diagram: family (m_i) of models such that (m_i, m_j) is a model for A_{ij}
- local models of O_j modulo a diagram: jth-projection on models of the diagram

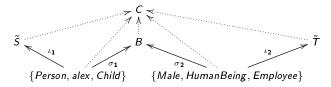
Framework: different domains reconciled in a global domain

• model for a diagram: family (m_i) of models with equalizing function γ such that $(\gamma_i m_i, \gamma_j m_j)$ is a model for A_{ij}

Motivation OntolOp DOL Focused OMS Distributed OMS Conclusion Relativization of an OWL ontology

Let O be an ontology, define its relativization \tilde{O} :

- concepts are concepts of O with a new concept \top_O ;
- roles and individuals are the same

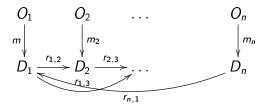

• axioms:

- each concept C is subsumed by \top_{O} ,
- each individual *i* is an instance of \top_{O} ,
- each role r has domain and range \top_O .

and the axioms of O where the following replacement of concept is made:

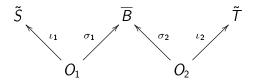
- each occurence of \top is replaced by \top_{O} ,
- each concept $\neg C$ is replaced by $\top_O \setminus C$, and
- each concept $\forall R.C$ is replaced by $\top_O \sqcap \forall R.C$.

where


ontology B =Class: Thing_S Class: Thing_T Class: Person_HumanBeing SubClassOf: Thing_S, Thing_T Class: Male Class: Employee Class: Child SubClassOf: Thing_T and \neg Employee Individual: alex Types: Male

ontology C =**Class:** ThingS Class: Thing T **Class**: Person HumanBeing **SubClassOf**: ThingS, ThingC Class: Male SubClassOf: Person HumanBeing Class: Employee SubClassOf: ThingT Class: Child SubClassOf: ThingS **Class:** Child **SubClassOf:** ThingT and \neg Employee Individual: alex Types: Male, Person HumanBeing

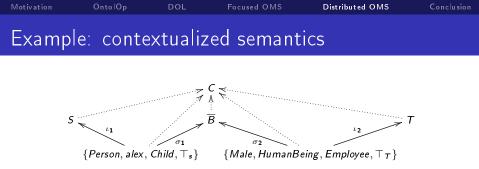
Motivation OntolOp DOL Focused OMS Distributed OMS Conclusion Contextualized semantics of diagrams


Framework: different domains related by coherent relations

such that

- r_{ij} is functional and injective,
- r_{ii} is the identity (diagonal) relation,
- r_{ji} is the converse of r_{ij} , and
- r_{ik} is the relational composition of r_{ij} and r_{jk}
- model for a diagram: family (m_i) of models with coherent relations (r_{ij}) such that $(m_i, r_{ji}m_j)$ is a model for A_{ij}

where \overline{B} modifies B as follows:


- r_{ij} are added to \overline{B} as roles with domain op_s and range op_t
- the correspondences are translated to axioms involving these roles:

•
$$s_i = t_j$$
 becomes $s_i r_{ij} t_j$

- $a_i \in c_j$ becomes $a_i \in \exists r_{ij}.c_j$
- . . .
- the properties of the roles are added as axioms in \overline{B}

ontology
$$\overline{B} =$$

Class: ThingS
Class: ThingT
ObjectPropery: r_{ST} Domain: ThingS Range: ThingT
Class: Person EquivalentTo: r_{ST} some HumanBeing
Class: Employee
Class: Child SubClassOf: r_{ST} some \neg Employee
Individual: alex Types: r_{ST} some Male

where

ontology C = Class: ThingS Class: ThingT ObjectPropery: r_{ST} Domain: ThingS Range: ThingT Class: Person EquivalentTo: r_{ST} some HumanBeing Class: Employee Class: Child SubClassOf: r_{ST} some \neg Employee Individual: alex Types: r_{ST} some Male, Person

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
QueryRelatedD	efn ::= Que	ryDefn S	SubstDefn Result	Defn	
QueryDefn	• •			ars 'where' Sentenc	e
	0MS ['along' Tı	ranslation]		
SubstDefn	::= 'subs	titution'	SubstName ':' OMS	'to' OMS '=' Symbo	olMap
ResultDefn	::= 'resu	lt' Result	tName SubstName (',' SubstName)∗	
	Query	Name ['%co	omplete']		
QueryName	::= IRI				
SubstName	::= IRI				
ResultName	::= IRI				
Vars	::= Symbo	l (','Sy	/mbol)*		

DOL is a logical (meta) language

- focus on ontologies, models, specifications,
- and their logical relations: logical consequence, interpretations, ...

Queries are different:

- answer is not "yes" or "no", but an answer substitution
- query language may differ from language of OMS that is queried

- conjunctive queries in OWL
- Prolog/Logic Programming
- SPARQL

New OMS declarations and relations:

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion

Conclusion

Mossakowski

Distributed Ontology, Modeling and Specification Language (DOL)

- What is a suitable abstract meta framework for non-monotonic logics and rule languages like RIF and RuleML? Are institutions suitable here? different from those for OWL?
- What is a useful abstract notion of query (language) and answer substitution?
- How to integrate TBox-like and ABox-like OMS?
- Can the notions of class hierarchy and of satisfiability of a class be generalised from OWL to other languages?
- How to interpret alignment correspondences with confidence other that 1 in a combination?
- Can logical frameworks be used for the specification of OMS languages and translations?
- Proof support

- available at hets.dfki.de
- speaks DOL, HetCASL, CoCASL, CspCASL, MOF, QVT, OWL, Common Logic, and other languages
- analysis
- computation of colimits
- management of proof obligations
- interfaces to theorem provers, model checkers, model finders

Ontohub is a web-based repository engine for distributed heterogeneous (multi-language) OMS

- prototype available at ontohub.org
- speaks DOL, OWL, Common Logic, and other languages
- mid-term goal: follow the Open Ontology Repository Initiative (OOR) architecture and API
- API is discussed at https://github.com/ontohub/00R_0ntohub_API
- annual Ontology summit as a venue for review, and discussion

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
EquivKeywo	rd ::=	'equivalen	ce'		
EquivName	::= :	-			
EquivType	::= (GroupOMS '	<\lessthan>-<\gre	aterthan>' GroupOM	S

- equivalence $Id : O_1 \leftrightarrow O_2 = O_3$
- (fragment) OMS O_3 is such that O_i then %def O_3 is a definitional extension of O_i for i = 1, 2;
- this implies that O_1 and O_2 have model classes that are in bijective correspondence

equivalence e : algebra:BooleanAlgebra ↔ algebra:BooleanRing =

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
ModuleRelDef			oduleName [Conse rfaceSignature	rvative] ':'	
ModuleName	::=		5		
ModuleType	::=	OMS 'of' 0	MS		

• module $Id \ c : O_1 \ of \ O_2 \ for \ \Sigma$

• O_1 is a module of O_2 with restriction signature Σ and conservativity c

c=%mcons every Σ -reduct of an O_1 -model can be expanded to an O_2 -model

 $\begin{array}{l} c = \% \text{ccons} \ \text{every} \ \Sigma \text{-sentence} \ \varphi \ \text{following from} \ O_1 \ \text{already} \\ \text{follows from} \ O_1 \end{array}$

This relation shall hold for any module O_1 extracted from O_2 using the **extract** construct.

- DOL is a meta language for (formal) ontologies, specifications and models (OMS)
- DOL covers many aspects of modularity of and relations among OMS ("OMS-in-the large")
- DOL will be submitted to the OMG as an answer to the OntolOp RFP
- you can help with joining the OntolOp discussion
 - see ontoiop.org

Motivation	OntolOp	DOL	Focused OMS	Distributed OMS	Conclusion
Related	work				

- Structured specifications and their semantics (Clear, ASL, CASL, ...)
- Heterogeneous specification (HetCASL)
- modular ontologies (WoMo workshop series)