
9. DOL abstract syntax

9.1. Abstract syntax categories
DOL provides abstract syntax categories for

� heterogeneous OMS (which can be basic OMS in some OMS language, or unions, trans-
lations, minimizations, combinations, approximations of OMS, among others)

� distributed OMS (items in distributed OMS are: OMS de�nitions, OMS mapping def-
initions, and quali�cations choosing the logic, OMS language and/or serialization)

� identi�ers

� annotations

Additionally, the categories of the abstract syntaxes of any conforming OMS languages (cf.
clause 2.1) are also DOL abstract syntax categories.
The following subclauses, one per abstract syntax category, specify the abstract syntax of

DOL in EBNF ISO/IEC 14977:1996. Note that ISO EBNF lacks an operator for �at least one
repetition�. This OMG Speci�cation therefore adopts the following convention: Whenever
some sequence S is repeated at least once, we give it a non-terminal identi�er of its own
(RepeatedS = S { S } ;), or group it as in LongerExpression = Foo Bar (S {
S }) ;.

9.2. Distributed OMS
A distributed OMS consists of named (possibly heterogeneous) OMS, and mappings be-
tween its participating (heterogeneous) OMS. More speci�cally, a distributed OMS consists
of a name, followed by a list of DistOMSItems. A DistOMSItem is either an OMS de�ni-
tion (OMSDefn), or a mapping between OMS (MappingDefn), or a Qualification select-
ing a speci�c OMS language, logic and/or syntax that is used to interpret the subsequent
DistOMSItems. Alternatively, a distributed OMS can also be the verbatim inclusion of an
OMS written in an OMS language that conforms with DOL (OMSInConformingLanguage;
cf. 2.1).

DistOMS = [PrefixMap] , DistOMSDefn
| OMSInConformingLanguage ;

DistOMSDefn = ’dist-oms-defn’ , DistOMSName , { DistOMSItem } ;
OMSInConformingLanguage = <language and serialization specific> ;
DistOMSItem = OMSDefn | MappingDefn | Qualification ;
Qualification = LanguageQual | LogicQual | SyntaxQual ;
LanguageQual = ’lang-select’ , LanguageRef ;
LogicQual = ’logic-select’ , LogicRef ;
SyntaxQual = ’syntax-select’ , SyntaxRef ;
DistOMSName = IRI ;

37

9. DOL abstract syntax

57 Note(57)
At the beginning of a distributed OMS, one can declare a PrefixMap for abbreviating

long IRIs; see clause 9.5 for details.

9.3. Heterogeneous OMS
An OMS (OMS) can be one of the following:

� a basic OMS BasicOMS written inline, in a conforming serialization of a conforming
OMS language1,

� a translation of an OMS into a di�erent signature or OMS language,

� a reduction of an OMS to a smaller signature and/or less expressive logic (that is, some
non-logical symbols are hidden, but the semantic e�ect of sentences involving these is
kept),

� an approximation of an OMS, normally in a sublogic, using a given approximation
method (with the e�ect that sentences not expressible in the sublogic are weakened or
removed),

� a union of OMS,

� an extension of an OMS by other ones, it can be optionally named and/or marked as
conservative, monomorphic, de�nitional or implied,

� a module extracted from an OMS, using a restriction signature,

� a reference to an OMS existing on the Web,

� an OMS quali�ed with the OMS language that is used to express it,

� a combination of OMS (technically, this is a colimit, see [41]),

� a minimization of an OMS, forcing the subsequently declared non-logical symbols to
be interpreted in a minimal way, while the non-logical symbols declared so far are
�xed (alternatively, the non-logical symbols to be minimized and to be varied can be
explicitly declared).

BasicOMS = OMSInConformingLanguage ;
MinimizableOMS = BasicOMS

| ’oms-ref’ , OMSRef , [ImportName] ;
ExtendingOMS = MinimizableOMS

| ’minimize’ , MinimizableOMS ;
OMS = ExtendingOMS

| ’minimize-symbols’ , OMS , CircMin , CircVars

57
Note: FYI: Things changed from HetCASL:
• logic-select now mandatory (no default logic) and tree-scoped
• download-items (encourage linked data best practices instead)
• item-name-map (to be replaced by namespaces??)
• lib-version (to be replaced by metadata annotations, e.g. OMV)
• indirect-mapping (will always use full IRIs, and abbreviate them by syntactic namespaces)

1In this place, any OMS in a conforming serialization of a conforming OMS language is permitted.
However, DOL's module sublanguage should be given preference over the module sublanguage of
the respective conforming OMS language; e.g. DOL's extension construct should be preferred over
OWL's import construct.

38

9. DOL abstract syntax

| ’translation’ , OMS , Translation
| ’reduction’ , OMS , Reduction
| ’module-extract’ , OMS , Extraction
| ’approximation’ , OMS , Approximation
| ’union’ , OMS , [ConsStrength] , OMS
| ’extension’ , OMS , ExtensionOMS
| ’qual-oms’ , { Qualification } , OMS
| ’bridge’ , OMS, { Translation } , OMS
| ’combination’ , Graph ;

CircMin = Symbol , { Symbol } ;
CircVars = { Symbol } ;

Translation = ’renaming’ , { LogicTranslation } , [SymbolMapItems] ;
LogicTranslation = ’logic-translation’ , OMSLangTrans ;

Reduction = ’hidden’ , { LogicReduction } , [SymbolItems]
| ’revealed’ , [SymbolMapItems] ;

LogicReduction = ’logic-reduction’ , OMSLangTrans ;

SymbolItems = ’symbol-items’ , (Symbol , { Symbol }) ;
SymbolMapItems = ’symbol-map-items’ , (SymbolOrMap , { SymbolOrMap }) ;58Note(58)

Extraction = ’extraction’, ModuleProperties, [InterfaceSignature] ;

ModuleProperties = Conservative | ’minimal’ | ’safe’ | ’depleting’;

Approximation = ’approximation’ , InterfaceSignature , [LogicRef] ;

ExtensionOMS = [ConsStrength] , [ExtensionName] , ExtendingOMS ;

ConsStrength = Conservative | ’monomorphic’
| ’weak-definitional’ | ’definitional’ | ’implied’ ;

Conservative = ’consequence-conservative’ | ’model-conservative’ ;

InterfaceSignature = ’interface-signature’ , SymbolItems ;

ImportName = IRI ;
ExtensionName = IRI ;

An OMS de�nition OMSDefn names an OMS. It can be optionally marked as consistent,
using ConsStrength.2. An SymbolItems, used in an OMS Reduction, is a list of non-
logical symbols that are to be hidden. A LogicReduction denotes a logic reduction to a
less expressive OMS language. A SymbolMapItems, used in OMS Translations, maps

58
Note: TODO: say that this default may be overridden by specific logics, such as CASL
2More precisely, ’consequence-conservative’ here requires the OMS to have a non-trivial set
of logical consequences, while ’model-conservative’ requires its satis�ability.

39

9. DOL abstract syntax

symbols to symbols59 , or a logic translation. An OMS language translation OMSLangTrans Note(59)
or ApproxMethod can be either speci�ed by its name (optionally quali�ed with source and
target OMS language), or be inferred as the default translation or approximation method
between a given source and target (where even the source may be omitted; it is then inferred
as the OMS language of the current OMS).

OMSDefn = ’oms-defn’ , OMSName , [ConsStrength] , OMS ;

Symbol = IRI ;
SymbolMap = ’symbol-map’ , Symbol , Symbol ;
SymbolOrMap = Symbol | SymbolMap ;
Term = <an expression specific to a basic OMS language> ;

OMSName = IRI ;

OMSRef = IRI ;
OMSOrMappingorGraphRef = IRI ;
ExtensionRef = IRI ;

LoLaRef = LanguageRef | LogicRef ;

LanguageRef = IRI ;
LogicRef = IRI ;
SyntaxRef = IRI ;

OMSLangTrans = ’named-trans’ , OMSLangTransRef
| ’qual-trans’ , OMSLangTransRef , LoLaRef , LoLaRef
| ’anonymous-trans’ , LoLaRef , LoLaRef
| ’default-trans’ , LoLaRef60 ; Note(60)

OMSLangTransRef = IRI ;

ApproxMethod = ’named-approx’, ApproxMethodRef
| ’qual-approx’ , ApproxMethodRef , LoLaRef
| ’default-approx’ , LoLaRef61 ; Note(61)

ApproxMethodRef = IRI ;

ExtractionMethod = IRI ;

59
Note: FYI: On 2012-07-18 we decided not to specify lambda-style symbol-to-term mappings for now.
Would be convenient, but specifying its semantics in an OMS language independent way would re-
quire additional institution infrastructure – and the same effect can be achieved by auxiliary definitional
extensions, cf. Colore (so promote this, informatively, as a “best practice”?)

60
Note: TODO: need to figure out which of these we actually want to keep. named-trans and default-trans
are sufficient, because the other ones contain redundant information that is only stated once more for
clarity. Source and target logic of qual-trans are clear from inspecting the translation, and the source
logic of anonymous-trans is clear from the OMS that is translated.

61
Note: TODO: These alternatives are coherent with what we discussed about the approximation syntax
with defaults, but they are different from OMSLangTrans. But see the comment for OMSLangTrans
above.

40

9. DOL abstract syntax

9.4. OMS Mappings
A OMS mapping provides a connection between two OMS. A OMS mapping de�nition is
the de�nition of either a named interpretation (IntprDefn), a named declaration of the
relation between a module of an OMS and the whole OMS (ModuleRelDefn), or a named
alignment (AlignDefn). The SymbolMapItems in an interpretation always must lead to a
signature morphism; a proof obligation expressing that the (translated) source OMS logically
follows from the target OMS is generated. In contrast to this, an alignment just provides a
connection between two OMS without logical semantics, using a set of Correspondences.
Each correspondence may map some OMS non-logical symbol to another one (possibly given
by a term) and an optional con�dence value. Moreover, the relation between the two non-
logical symbols can be explicitly speci�ed (like being equal, or only being subsumed). A
ModuleRelDefn declares that a certain OMS actually is a module of some other OMS with
respect to the InterfaceSignature.

MappingDefn = IntprDefn | EquivDefn | GraphDefn | ModuleRelDefn | AlignDefn;

IntprDefn = ’intpr-defn’ , IntprName , [Conservative] , IntprType ,
{ LogicTranslation } , [SymbolMapItems] ;

IntprName = IRI ;
IntprType = ’intpr-type’ , OMS , OMS ;

EquivDefn = ’equiv-defn’ , EquivName , EquivType , OMS ;
EquivName = IRI ;
EquivType = ’equiv-type’ , OMS , OMS ;

GraphDefn = ’graph-defn’, GraphName, Graph ;
GraphName = IRI ;
Graph = ’graph’, GraphElements , ExcludeExtensions
GraphElements = ’graph-elements’, { OMSOrMappingorGraphRef } ;
ExcludeExtensions = ’exclude-imports’ , { ExtensionRef } ;

ModuleRelDefn = ’module-defn’ , ModuleName , [Conservative] , ModuleType ,
InterfaceSignature ;

ModuleName = IRI ;
ModuleType = ’module-type’ , OMS , OMS ;

AlignDefn = ’align-defn’ , AlignName , [AlignCard] , AlignType3

{ Correspondence } ;
AlignName = IRI ;
AlignCards = AlignCardForward , AlignCardBackward62 ; Note(62)
AlignCardForward = ’align-card-forward’ , AlignCard ;
AlignCardBackward = ’align-card-backward’ , AlignCard ;
AlignCard = ’injective-and-total’

| ’injective’

3Note that this grammar uses �type� as in �the type of a function�, whereas the Alignment API
uses �type� for the totality/injectivity of the relation/function. For the latter, this grammar uses
�cardinality�.

62
Note: TODO: mention that the default is twice “injective and total”

41

9. DOL abstract syntax

| ’total’
| ’neither-injective-nor-total’ ;

AlignType = ’align-type’ , OMS , OMS ;

Correspondence = CorrespondenceBlock
| SingleCorrespondence
| ’default-correspondence’63 ; Note(63)

CorrespondenceBlock = ’correspondence-block’ , [RelationRef] , [Confidence]64Note(64)
{ Correspondence } ;

SingleCorrespondence = ’correspondence’ , SymbolRef , [RelationRef] , [Confidence] ,
TermOrSymbolRef , [CorrespondenceID]65Note(65)

;
CorrespondenceID = IRI ;
SymbolRef = IRI ;
TermOrSymbolRef = Term | SymbolRef ;
RelationRef = ’subsumes’ | ’is-subsumed’ | ’equivalent’ | ’incompatible’

| ’has-instance’ | ’instance-of’ | ’default-relation’66Note(66)
| IRI ;

Confidence = Double67 ; Note(67)
Double = ? a number ∈ [0, 1] ? ;

68 Note(68)
A symbol map in an interpretation is required to cover all non-logical symbols of the

source OMS; the semantics speci�cation in clause 10 makes this assumption4. Applications
shall implicitly map those non-logical symbols of the source OMS, for which an explicit
mapping is not given, to non-logical symbols of the same (local) name in the target OMS,
wherever this is uniquely de�ned � in detail:

Require: Os, Ot are OMS
Require: M ⊆ Σ(Os) × Σ(Ot) maps non-logical symbols (i.e. elements of the signature) of
Os to non-logical symbols of Ot
for all es ∈ Σ(Os) not covered by M do
ns ← localname(es)
Nt ← {localname(e)|e ∈ Σ(Ot)}
if Nt = {et} then {i.e. if there is a unique target}
M ←M ∪ {(es, et)}

end if

63
Note: TODO: add concrete syntax, plus explanation: applies current default correspondence to all
non-logical symbols with the same local names, using the “same local name” algorithm presented
elsewhere

64
Note: TODO: How do we say that at least one of these should be given?

65
Note: TODO: concrete syntax, e.g., a = x, b my:similarTo y %(correspond-b-to-y)%, c my:similarTo
0.75 z

66
Note: TODO: say that, unless a different default is specified in a surrounding CorrespondenceBlock,
the default is ’equivalent’

67
Note: TODO: check if Double really makes sense for implementations, maybe we’d like to compare
confidence values for equality

68
Note: TODO: cite Alignment API for RelationRef; recommend linked data for RelationRef =
IRI, or recommend registry?

4Mapping a non-logical symbol twice is an error. Mapping two source non-logical symbols to the
same target non-logical symbol is legal, this then is a non-injective OMS mapping.

42

9. DOL abstract syntax

end for
Ensure: M completely covers Σ(Os)

The local name of a non-logical symbol is determined as follows5:

Require: e is a non-logical symbol (identi�ed by an IRI; cf. clause 9.5)
if e has a fragment f then {production ifragment in IETF/RFC 3987:2005}
return f

else
n ← the longest su�x of e that matches the Nmtoken production of XML W3C/TR
REC-xml:2008
return n

end if
69 Note(69)

9.5. Identifiers
This section speci�es the abstract syntax of identi�ers of DOL OMS and their elements.

9.5.1. IRIs
In accordance with best practices for publishing OMS on the Web, identi�ers of OMS and
their elements should not just serve as names, but also as locators, which, when dereferenced,
give access to a concrete representation of an OMS or one of its elements. (For the speci�c
case of RDFS and OWL OMS, these best practices are documented in [20]. The latter
is a specialization of the linked data principles, which apply to any machine-processable
data published on the Web [28].) It is recommended that publicly accessible DOL OMS be
published as linked data.

70Therefore, in order to impose fewer conformance requirements on applications, DOL Note(70)
commits to using IRIs for identi�cation IETF/RFC 3987:2005. It is recommended that
distributed OMS use IRIs that translate to URLs when applying the algorithm for mapping
IRIs to URIs speci�ed in IETF/RFC 3987:2005, Section 3.1. DOL descriptions of any element
of a distributed OMS that is identi�ed by a certain IRI should be located at the correspond-
ing URL, so that agents can locate them. As IRIs are speci�ed with a concrete syntax in
IETF/RFC 3987:2005, DOL adopts the latter into its abstract syntax as well as all of its
concrete syntaxes (serializations)71 . Note(71)
In accordance with semantic web best practices such as the OWL Manchester Syntax [17],

this OMG Speci�cation does not allow relative IRIs, and does not o�er a mechanism for
de�ning a base IRI, against which relative IRIs could be resolved.
Concerning these languages, note that they allow arbitrary IRIs in principle, but in practice

they strongly recommend using IRIs consisting of two components [20]:

5In practice, this can often have the e�ect of undoing an IRI abbreviation mechanism that was
used when writing the respective OMS (cf. clause 9.5). In general, however, functions that turn
abbreviations into IRIs are not invertible. For this reason, the implicit mapping of non-logical
symbols is speci�ed independently from IRI abbreviation mechanisms possibly employed in the
OMS.

69
Note: some text that was left over here, but I don’t recall what we meant by it: recommendations for
dealing with OMS language dialects

70
Note: Q-AUT: Does this motivation/justification sound reasonable to you?

71
Note: Q-ALL: I meant to say: for IRIs, the abstract syntax is the same as the concrete syntax.

43

9. DOL abstract syntax

namespace an IRI that identi�es the complete OMS (a basic OMS in DOL terminology),
usually ending with # or /

local name a name that identi�es a non-logical symbol within an OMS

IRI = ’full-iri’ , FullIRI | ’curie’ , CURIE6 ;
FullIRI = ? as defined by the IRI production in IETF/RFC 3987:2005 ? ;

9.5.2. Abbreviating IRIs using CURIEs
As IRIs tend to be long, and as syntactic mechanisms for abbreviating them have been stan-
dardized, it is recommended that applications employ such mechanisms and support ex-
panding abbreviative notations into full IRIs. For specifying the semantics of DOL, this OMG
Speci�cation assumes full IRIs everywhere, but the DOL abstract syntax adopts CURIEs
(compact URI expressions) as an abbreviation mechanism, as it is the most �exible one that
has been standardized to date.
The CURIE abbreviation mechanism works by binding pre�xes to IRIs. A CURIE consists

of a pre�x, which may be empty, and a reference. If there is an in-scope binding for the pre�x,
the CURIE is valid and expands into a full IRI, which is created by concatenating the IRI
bound to the pre�x and the reference.
DOL adopts the CURIE speci�cation of RDFa Core 1.1 W3C/TR REC-rdfa-core-20120607,

Section 6 with the following changes:

� DOL does not support the declaration of a �default pre�x� mapping 72 (covering Note(72)
CURIEs such as :name).

� DOL does support the declaration of a �no pre�x� mapping (covering CURIEs such as
name).

� DOL does not make use of the safe_curie production.

� DOL does not allow binding a relative IRI to a pre�x.

� Concrete syntaxes of DOL are encouraged but not required to support CURIEs.7

CURIEs can occur in any place where IRIs are allowed, as stated in clause 9.5.1. Informa-
tively, we can restate the CURIE grammar supported by DOL as follows:

CURIE = [Prefix] , Reference ;
Prefix = NCName , ’:’ (* see �NCName� in W3C/TR REC-xml-names:2009, Sec-
tion 3 *) ;
Reference = Path , [Query] , [Fragment] ;
Path = ipath-absolute | ipath-rootless | ipath-empty

(* as de�ned in IETF/RFC 3987 *) ;
Query = ’?’ , iquery (* as de�ned in IETF/RFC 3987 *) ;
Fragment = ’#’ , ifragment (* as de�ned in IETF/RFC 3987 *) ;

6speci�ed below in clause 9.5.2
72
Note: Q-AUT: Are such explanatory notes OK here?
7This is a concession to having an RDF-based concrete syntax among the normative concrete syn-
taxes. RDFa is the only standardized RDF serialization to support CURIEs so far. Other seri-
alizations, such as RDF/XML or Turtle, support a subset of the CURIE syntax, whereas some
machine-oriented serializations, including N-Triples, only support full IRIs.

44

9. DOL abstract syntax

Pre�x mappings can be de�ned at the beginning of a distributed OMS (speci�ed in clause 9.2;
these apply to all parts of the distributed OMS, including basic OMS as clari�ed in clause 9.5.3).
Their syntax is:

PrefixMap = ’prefix-map’ , { PrefixBinding } ;
PrefixBinding = ’prefix-binding’ , BoundPrefix , IRIBoundToPrefix ;
BoundPrefix = ’bound-prefix’ , [Prefix] ;
IRIBoundToPrefix = ’full-iri’ , FullIRI ;

Bindings in a pre�x map are evaluated from left to right. Authors should not bind the
same pre�x twice, but if they do, the later binding wins.

9.5.3. Mapping identifiers in basic OMS to IRIs
While DOL uses IRIs as identi�ers throughout, basic OMS languages do not necessarily do;
for example:

� OWL W3C/TR REC-owl2-syntax:2009, Section 5.5 does use IRIs.

� Common Logic ISO/IEC 24707:2007 supports them but does not enforce their use.

� F-logic [26] does not use them at all.

However, DOL OMS mappings as well as 73 certain operations on OMS require making Note(73)
unambiguous references to non-logical symbols of basic OMS (SymbolRef). Therefore, DOL
provides a function that maps global identi�ers used within basic OMS to IRIs. This mapping
a�ects all non-logical symbol identi�ers (such as class names in an OWL ontology), but not
locally-scoped identi�ers such as bound variables in Common Logic ontologies. DOL reuses
the CURIE mechanism for abbreviating IRIs for this purpose (cf. clause 9.5.2).
CURIEs that have a pre�x may not be acceptable identi�ers in every serialization of a

basic OMS language, as the standard CURIE separator character, the colon (:), may not be
allowed in identi�ers. 74 Therefore, the declaration of DOL-conformance of the respective Note(74)
serialization (cf. clause 2.2) may de�ne an alternative CURIE separator character, or it may
forbid the use of pre�xed CURIEs altogether.
The IRI of a non-logical symbol identi�er in a basic OMS O is determined by the following

function:

Require: D is a distributed OMS
Require: O is a basic OMS in serialization S
Require: id is the identi�er in question, identifying a symbol in O according to the speci�-
cation of S

Ensure: i is an IRI
if id represents a full IRI according to the speci�cation of S then
i← id

else
{�rst construct a pattern cp for CURIEs in S, then match id against that pattern}
if S de�nes an alternative CURIE separator character cs then

sep ← cs
else if S forbids pre�xed CURIEs then

73
Note: TODO: maybe clarify which ones, by checking the grammar for all occurrences of SymbolRef

74
Note: Q-ALL: I recall that in the 2012-04-18 teleconference we agreed on this – but does it really make
sense? Are there any relevant OMS language serializations that do not allow : in identifiers (or that do
allow it theoretically but discourage it in practice) but allow some other non-letter character?

45

9. DOL abstract syntax

sep ← unde�ned
else

sep ← : {the standard CURIE separator character}
end if
{The following statements construct a modi�ed EBNF grammar of CURIEs; see ISO/IEC
14977:1996 for EBNF, and clause 9.5.2 for the original grammar of CURIEs.}
if sep is de�ned then

cp ← [NCName, sep],Reference
else

cp ← Reference
end if
if id matches the pattern cp, where ref matches Reference then
if the match succeeded with a non-empty NCName pn then
p← concat(pn, :)

else
p← no pre�x

end if
if O binds p to an IRI pi according to the speci�cation of S then

nsi ← pi
else
P ← the innermost pre�x map in D, starting from the place of O inside D, and
going up the abstract syntax tree towards the root of D
while P is de�ned do
if P binds p to an IRI pi then

nsi ← pi
break out of the while loop

end if
P ← the next pre�x map in D, starting from the place of the current P inside
D, and going up the abstract syntax tree towards the root of D

end while
return an error

end if
i← concat(nsi , ref)

else
return an error

end if
end if
return i

This mechanism applies to basic OMS given inline in a distributed OMS document (BasicOMS),
not to OMS in external documents (OMSInConformingLanguage); the latter shall be self-
contained.
While CURIEs used for identifying parts of a distributed OMS (cf. clause 9.5.2) are merely

syntactic sugar, the pre�x map for a basic OMS is essential to determining the semantics of
the basic OMS within the distributed OMS. Therefore, any DOL serialization shall provide
constructs for expressing such pre�x maps, even if the serialization does not support pre�x
maps otherwise.

46

9. DOL abstract syntax

75 Note(75)

9.6. DOL Serializations
Say how existing OMS in existing serializations have to be adapted/wrapped (or ideally: not
adapted at all!) in order to become valid OMS in some DOL serialization.7677 Note(76)

Note(77)

9.7. Annotations
78 79 Annotations always have a subject, which is identi�ed by an IRI. Where the given Note(78)

Note(79)OMS language does not provide a way of assigning IRIs to a desired subject of an annotation
(e.g. if one wants to annotate an import in OWL), a distributed OMS may employ RDF
annotations that use XPointer or IETF/RFC 5147 as means of non-destructively referencing
pieces of XML or text by URI.8

75
Note: TODO: somewhere we need to mention semantic annotations to embedded fragments in con-
forming OMS languages, e.g. %implied

76
Note: TODO: Essential points are:– need to be able to say: “the file at URL U is in OWL 2 Manchester
syntax”– maybe use packaging/wrapping format– compare MIME types, HTTP content negotiation (but
don’t go too deep into communication protocols)

77
Note: Reply: Maybe we can implement something like the Linux command “file”?

78
Note: this subclause will be moved to annex M

79
Note: TODO: Properly integrate this text from our LaRC 2011 paper
8We intend to utilise the extensibility of the XPointer framework by developing additional XPointer
schemes, e.g. for pointing to subterms of Common Logic sentences.

47

