
April 2017

Integrating GoodRelations in a
Domain-Specific Ontology

Andrea Westerinen, Rebecca Tauber

Nine Points Solutions, LLC

Abstract. GoodRelations has existed since 2008 to aid businesses in
describing their products and services. It provides a variety of definitions and
terminology useful for improving a company's online retail presence. In this
paper, we go beyond using GoodRelations simply for structured data in web
pages, and combine it with a domain-specific ontology. The goals of the work
are threefold, to define a set of retail-oriented Ontology Design Patterns
(ODPs) that makes it easier to understand and reuse GoodRelations, to show
how ontologies can be integrated with GoodRelations, and to illustrate several
retail applications enabled by the use of ontologies. The paper presents a
climbing gear ontology which is integrated with GoodRelations to define a set
of retail ODPs and enable creating customer- and business-oriented solutions
that can be used in several scenarios.

Keywords: GoodRelations Ontology, schema.org, Semantic Interoperability,
Ontology Design Pattern, Domain-Specific Ontology, Data Reuse

1. Introduction

According to the U.S. Department of Commerce, online retail sales in the United States
totaled over $291 million USD for the first three quarters of 2016 ("U.S. Census Bureau
News, Quarterly Retail E-Commerce Sales", 2016). Search Engine Optimization (SEO) is
one of the keys to online retail, dealing with design and documentation techniques that
make a web site both user- and search engine-friendly. The focus of this project is to
improve search results via the use of schema.org ("Schema", n.d.) and to enhance
business opportunity and a customer's online or in-store experience via the use of
ontologies.

Search results are improved by embedding "structured data" markup within a web site's
pages, structured by the semantics of the schema.org vocabulary (also referred to as
"Schema"). In an analysis done by Google in 2015, 31.3% of a sample of 10 billion web
pages included Schema markup, with an average of six entities described per page (Guha,
Brickley & Macbeth, 2015). Web pages are clearly utilizing this vocabulary, but it is still
a small number compared to the huge number of pages that exist. Many, especially
smaller, companies do not provide structured data at all. A study by Searchmetrics in
2014 found that under 1% of all web sites leveraged schema.org ("Schema.org analysis
2014", 2014). The businesses providing these web sites potentially lose customers
because they rank lower in online searches. There are multiple reasons for this lack of

Westerinen, Tauber

 2

use: those companies may not know that Schema exists, or do not understand how to use
it effectively.

Schema integrated concepts from GoodRelations, an OWL ontology, in 2012 to simplify
the descriptions of products, offers, services and other related information for e-
commerce (Guha, 2012). The importance of this integration can be seen in the
Searchmetrics 2014 study that showed that over a third of all Google search results
included information derived from Schema. The same study revealed that the second and
third most popular concepts from Schema were "Offers"1 and "Products". Both of these
concepts come from GoodRelations.

GoodRelations has existed since 2008 to aid businesses in describing their products and
services. It provides a variety of definitions and terminology useful for improving a
company's online retail presence. But, it takes some experience to understand how to use
GoodRelations. For this reason, this paper defines a set of simple Ontology Design
Patterns (ODPs) for describing companies, products and offers. Beyond just reusing the
patterns themselves, it is also possible to reuse the individuals (companies, product types
and specific product details, etc.) within an industry. This second kind of reuse reduces
the overall time and expertise required to create the ontologies, as the effort can be shared
among multiple retailers.

Although describing products and offers in a standard way is valuable, one can go
beyond simply adding structured data to web pages. In this paper, Schema/GoodRelations
concepts are combined with, and enhanced by, a domain-specific ontology. The goals of
the work are to show how ontologies can be integrated with Schema, and to illustrate the
value of the integration by describing several, concrete, retail solutions. The work
expands on several topics discussed in the Ontology Summit 2014 Communiqué
(Gruninger, Obrst et al., 2014), specifically:

• The role that ontologies can play in applications
• Engineering of ontologies to address reuse and domain-specific modeling

concerns

The paper is structured as follows: Section 2 is an overview of the GoodRelations
components of Schema, while Section 3 is an overview of Ontology Design Patterns in
general and the authors' proposed retail patterns. Section 4 discusses the development of
an ontology for climbing gear (the Retail Ontology for Climbing, ROC), and its
integration of GoodRelations. Section 5 describes various constraints and inferences
made possible with the use of ontologies. Section 6 concludes the paper with details on
future work.

1 The concept of "Offer" from GoodRelations provides the details on products and/or services that
are made available for a specific time, at a certain price, etc,

Westerinen, Tauber

 3

2. GoodRelations Ontology in schema.org

As explained above, the GoodRelations Ontology was incorporated into Schema in 2012.
Some concepts were integrated using different terminology (for example,
schema:Product is equivalent to gr:ProductOrService), but the semantics behind the
concepts remain roughly equivalent.

The following list defines the main concepts of interest in this paper and provides a brief
description of each one and its usage. Both the Schema and GoodRelations terms are
provided under the respective namespaces "schema" and "gr". This convention is
continued in the subsequent sections.

• schema:Product / gr:ProductOrService – the general concept of something
offered for sale

o ProductOrService can be an individual, a collection or a "model" as seen
in the next bulleted items, and has many data and object properties such
as description, condition, identifying codes, etc.

• schema:ProductModel / gr:ProductOrServiceModel – a kind of
gr:ProductOrService that is a "datasheet or vendor specification … a
prototypical description"

• schema:IndividualProduct / gr:Individual – a subclass of gr:ProductOrService
that represents a single, identifiable instance

• schema:SomeProducts / gr:SomeItems – a subclass of gr:ProductOrService that
represents a collection of multiple objects of the same model

• schema:Brand / gr:Brand – a label for a type of product or service
• schema:QualitativeValue / gr:QualitativeValue – a superclass for any

enumerations (such as sizes being restricted to "S", "M", "L" or "XL")
o Different gr:QualitativeValue individuals may be defined as equal to

each other or ordered (for example, "S" is less than "M")
• schema:QuantitativeValue / gr:QuantitativeValue – a superclass for numerical

values or intervals (such as height or duration)
o gr:QuantitativeValue individuals may have properties of minimum and

maximum values and units of measurement
• schema:Organization and schema:Person / gr:BusinessEntity – a legal entity per

commercial law
o gr:BusinessEntity has properties such as mailing address and contact

information, as well as sale locations/areas served, identifying
information (such as a Dun & Bradstreet number), etc.

There are many additional concepts and properties that could be discussed. One example
is schema:Offer (gr:Offering). "Offer" defines the terms and conditions (typically, a
payment) for providing/acquiring a product or service. It is discussed further in Section
4.5 related to a retailer's inventory.

Westerinen, Tauber

 4

3. Retail Ontology Design Patterns

Schema.org can be used alone to improve a retailer's ranking in search results, by
providing product, pricing and related information. GoodRelations can be used to provide
more complex information, and to reason and infer new data from schema.org's
information. And, all this information can be integrated with domain-specific ontologies
to support a variety of applications (some examples of which are discussed below).

In Section 4, the specific integration of GoodRelations with an ontology for classifying
and understanding climbing gear is described. But, before delving into the integration
details, this section outlines a set of general ODPs for retail.

An ontology describes the concepts, relationships, properties, axioms and individuals of
a domain, whereas an ODP is focused on a specific and commonly recurring modeling
problem. In this paper, both the semantics of a set of retail ODPs and their rendering
using OWL 2 ("OWL 2", 2012) are discussed. For the retail ODPs, OWL 2 was chosen
because it is built on RDF, which is an underpinning of the Linked Data and schema.org
environments.

The retail ODPs were created to allow a set of merchants to consistently describe their
products (and instances of products) across companies and individual stores. Consistency
allows a customer to better compare different products and offers, thereby improving the
customer experience. The adoption of the ODPs also spreads the cost of development
across multiple retailers. Product descriptions are coupled with a domain-specific
ontology that defines how the products are related and used, with the goal of further
improving the customer experience.

To start using the retail ODPs, the various manufacturers and products in a particular
retail domain need to be described. First, the manufacturers and their brands are defined,
and then their various product models are detailed. The relationships between products
are also classified by the domain ontology. Lastly, retail inventories and individual
personal collections/purchases can be assembled.

This approach organizes an industry's (domain's) concepts into a hierarchy of modular
ontologies. The ontologies "higher" in the hierarchy are more general, have few instances
and change less frequently. The top-most ontology in the hierarchy describes the kinds of
products in the domain as OWL 2 classes. New classes are needed only when new
categories of products are developed.

The next level in the hierarchy defines the industry's manufacturers and brands. These
can evolve, but change relatively infrequently. The "Manufacturers and Brands" ontology
(and all ontologies lower in the hierarchy) are also defined using OWL 2, but these

Westerinen, Tauber

 5

ontologies are only collections of ABox statements2 (based on concepts from higher in
the hierarchy). Next, product instances (provided by the manufacturers) are specified.
Lastly, collections of products (inventories and personal purchases) are defined. The
collections would be the most-often changed, with instances and their properties being
modified and extended frequently. Putting the collections at the bottom of the hierarchy
allows this flexibility without the need to edit any higher-level data sets. Also, these
bottom-level ontologies can easily reuse the manufacturers, models and domain concepts
so that these instances are consistent and not continuously redefined.

Figure 1 shows how the ontologies are organized in the hierarchy.

Figure 1. Concepts in a Retail Ontology Design Patterns

4. Retail Ontology for Climbing and GoodRelations Integration

The Retail Ontology for Climbing (ROC) was originally proposed as a way to test our
methods for knowledge engineering and ontology reuse and integration. However, once
initial development was complete, we worked with several retailers to expand it to
address better managing their inventory and pricing strategies, and to assist customers

2 An ABox is a statement of fact about an individual, such as "John is a Person". ABox statements
describe individuals (instances) using the concepts (terminology) of the TBox. In ROC, the
domain ontologies are definitions of the TBox.

Westerinen, Tauber

 6

regarding their gear and purchases. These use cases are discussed in more detail in the
following sections.

Although ROC is specific to the climbing gear retail industry, its use of GoodRelations
implements the ODPs described in Section 3. Note that the prefix, "roc", is used when
referring to any class or property from the Retail Ontology for Climbing.

4.1. Climbing Domain Ontology

ROC's top-most ontology defines categories of climbing products. It imports and extends
the GoodRelations Ontology and specifies a product class hierarchy under a
roc:ClimbingGear superclass, as shown in Figure 2. The superclass is used to anchor the
classification and distinguish climbing gear from other products and services that a
retailer may offer. For example, many retailers selling climbing equipment also sell a
wide variety of outdoor gear and may also offer training classes as a service. Therefore,
other possible superclasses (peers of roc:ClimbingGear) could be other ontologies'
Clothing, BikingGear or Training classes. These product hierarchies could easily be
integrated with ROC, all reusing and building on the retail ODPs.

Figure 2. Classes in the Retail Ontology for Climbing

ROC also defines properties, as shown in Figure 3, specific to the climbing industry. All
the properties are functional3, as indicated by an asterisk in the diagram. For example, a
carabiner is used for fastening ropes, among other purposes, and may have a lock on its
gate. Hence, a specific locking property is defined for the roc:Carabiner class, with a
Boolean range. Other properties such as condition and size are specified using
enumerations which are subclasses of gr:QualitativeValue.

3 A functional property is defined as having a single value for each instance where it is applied.

Westerinen, Tauber

 7

Figure 3. Properties in the Retail Ontology for Climbing

The details of the roc:Size, roc:Usage and roc:Condition enumerations are shown in
Figure 4. Each enumeration is defined as a class restricted to a specific set of individuals
(using an owl:oneOf restriction) which details all of the allowed values. Therefore, the
value of a property using any of those enumerations must be one of those individuals.

Figure 4. Enumerations in the Retail Ontology for Climbing

It is valuable to discuss the roc:Condition enumeration further, because the
roc:hasCondition property appears to duplicate the semantics of the similarly named
gr:condition property. The roc:Condition enumeration was defined to address a specific
application - to recommend replacement gear from a personal collection based on its
condition. The gr:condition property was not used because it has a literal range.

Although the definition of roc:Condition can be mapped to a literal, this is one example
of how relationships/properties in GoodRelations may need to be revised or updated to
meet specific requirements. Allowing arbitrary, free-form text was deemed problematic

Westerinen, Tauber

 8

in ROC because it would be difficult to understand and reason over the intended
semantics. Therefore, to consistently and accurately represent condition, a custom
enumeration and property were defined.

In addition to gr:condition, Schema offers an itemCondition property with a range of
schema:OfferItemCondition. schema:OfferItemCondition is also a closed enumeration
with the members, schema:NewCondition, schema:RefurbishedCondition,
schema:UsedCondition, and schema:DamagedCondition (“ItemCondition”, n.d.).
Schema’s Product class (which GoodRelations’ Individual subclasses) is a valid domain
for schema:itemCondition. The reuse of schema:OfferItemCondition is certainly
applicable to some domains, such as electronics where a retailer can sell refurbished
goods, but we determined it was necessary to have more specific conditions for climbing
gear and the personal use application. But, in case the Schema enumeration was used, the
owl:sameAs property was employed to define equivalences between these two
enumerations. For example, ROC's New and Damaged are equivalent to Schema's
NewCondition and DamagedCondition, respectively, while ROC's LikeNew and Good
map to Schema's UsedCondition.

4.2. Manufacturers Ontology

The Manufacturers ontology imports the climbing domain ontology described in the
previous section, which in turn imported GoodRelations. While the subclasses and
properties of roc:ClimbingGear are not specifically referenced in the Manufacturers
ontology, they are used in subsequent ontologies with respect to a manufacturer's
products.

The Manufacturers ontology is the next level of the ODPs defined in Section 3. All of the
companies defined in the ontology are types4 of the gr:BusinessEntity class (Schema's
Organization). For illustration, some of the major manufacturers of climbing gear, whose
details are provided in the ontology, are shown in Figure 5.

4 The word, "type" is used to describe an rdf:type declaration, which states that the instance is a
member of the specified class.

Westerinen, Tauber

 9

Figure 5. Examples of Manufacturers in the Climbing Retail Market

The following data is provided for each gr:BusinessEntity:

• Name (schema:name / gr:name)
• Address (schema:address, specifically a schema:PostalAddress and its related

properties)
• Contact information (schema:telephone, schema:faxNumber, schema:email)
• Webpage URL (schema:url / foaf:page) ("FOAF (2000-2015+)", n.d.)
• Logo (schema:logo / foaf:logo)5
• DUNS number (schema:duns / gr:hasDUNS, where available)

Where a manufacturer sells products from brick-and-mortar shops, their store locations
can also be defined to provide more complete information for a potential customer. This
is mentioned here for completeness. In Section 4.4., we describe how a retailer lists their
places of business. The same pattern can be used for a manufacturer's stores.

4.3. Product Model Ontology

The Product Model Ontology imports the Manufacturers Ontology (which in turn
imported the climbing domain ontology). All instances of product models are firstly
instances of schema:Product / gr:ProductOrServiceModel - an "intangible entity that
specifies some characteristics of a group of similar, usually mass-produced products, in
the sense of a prototype" (Hepp, 2011). Beyond the Schema / GoodRelations class, all
product models also are a member of one of the classes defined in the ROC climbing
ontology, as graphed in Figure 6.

5 In GoodRelations, a logo would be associated with a brand. But, for the particular business
entities in the climbing industry, the manufacturers do not typically breakdown their products by
brands. So, in this space, only the manufacturers are described.

Westerinen, Tauber

 10

Figure 6. Examples of Climbing ProductOrServiceModels

Each product model includes the following properties, at a minimum, and may have
additional detail both from GoodRelations and ROC, depending on the type of product
being described:

• Name (schema:name / gr:name)
• Description (schema:description / gr:description)
• Manufacturer (schema:manufacturer / gr:hasManufacturer)
• Manufacturer part number (schema:productID / gr:hasMPN)

o An identifier for the product unique for a manufacturer
• Additional properties (color, height, width, …)

As noted, "additional properties" are used to describe some climbing products, and may
not apply in other domains. These properties include, but are not limited to, gr:color,
gr:weight, gr:width, gr: height, and finally several custom properties from ROC, roc:size
and roc:usage. Other than the custom properties, GoodRelations has a variety of
properties that can be used to describe products and services, but only a few have been
implemented due to difficulties in determining their values. For example, 13-digit UPC
codes can be specified for a product using Schema's gtin-13 / GoodRelations'
hasEAN_UCC-13 properties. This level of detail would be valuable in creating a
complete product description with a globally unique product identifier, but the
information was not readily available for the climbing products. On the other hand,
searching a manufacturer's web site for manufacturer product numbers/identifiers was
much more straightforward.

It is valuable to discuss product identifiers in a bit more detail as it highlights the
difficulties of maintaining and evolving an ontology. At the present time, GoodRelations
documentation maps all of its specific identifier information (hasMPN, hasEAN_UCC-
13, hasGTIN-14, …) as subproperties of schema:productID (Guha, 2014). But, Schema
has evolved to map the individual properties directly.

Westerinen, Tauber

 11

Other aspects of a product are also described by Schema and GoodRelations. For
example, one can describe how products are similar (gr:isSimilarFor), or how one
product is an "accessory" or a "consumable" for another (gr:isAccessoryOrSparePartFor
and gr:isConsumableFor). Again, this is mentioned for completeness because
consumables6 do not apply in the climbing gear space, and a climber typically replaces a
complete product instead of repairing gear with spare parts for safety reasons.

4.4. Instances in a Retailer's Inventory

The next level in the ROC ontology hierarchy contains instances of actual, physical
products. For a retail inventory, the gr:SomeItems class (schema:SomeProducts) is used
to represent the items in inventory and their inventory level (schema:inventoryLevel /
gr:hasInventoryLevel). gr:SomeItems is defined as an "anonymous set", while
schema:SomeProducts is defined more explicitly as a "placeholder for multiple similar
products of the same kind" ("SomeProducts", n.d.). This concept is different from the
instances in the Product Model Ontology (which define a "prototype" of a product)
because the inventory items physically exist. Also, it is different from a particular
instance of an owned product, that exists once.

The range of the gr:hasInventoryLevel property is a schema:QuantitativeValue /
gr:QuantitativeValueFloat class. This seems confusing when first encountered, as it may
be more intuitive to define a simple integer value as the range. gr:QuantitativeValue is
used to allow flexibility when specifying the inventory level. It brings together several
pieces of information necessary to understand a "value". It has properties such as a
specific value and min/max values (to permit the definition of an interval), and also units
of measurement. Units are specified using gr:hasUnitOfMeasurement, which references
the UN/CEFACT Common Code as its range ("Popular UN/CEFACT Common Codes
for Units of Measurement", n.d.). Specific values can be defined using either the
gr:hasValue or gr:hasValueFloat properties (defining the value as a literal or as an exact
or approximate numeric value, respectively). In ROC, we simply use the gr:hasValue
property (and translate back to an integer when processing the query result). For
inventory quantities, we do not specify units, although the value "C62" could be used
which indicates "no unit".

Each of the items in the Retailer Inventory Ontology has three type7 declarations:
gr:SomeItems, owl:NamedIndividual, and finally the product class from the ROC
climbing ontology. Figure 7 shows the relationship of these classes, where each circle
represents an owl:NamedIndividual. In addition to its types, each instance references its
product model using the gr:hasMakeAndModel property. By referencing a product

6 A Consumable superclass is defined in ROC, but its semantics do not correspond to the
isConsumableFor property. The former defines products that the user "consumes" while climbing
(such as chalk to aid a climber when gripping a hold), while the latter describes other products that
are consumed when using the referencing product (such as garbage bags that are used in a
particular garbage container).
7 As stated earlier, "type" is used to describe an rdf:type declaration, which states that the instance
is a member of the specified class.

Westerinen, Tauber

 12

model, we can avoid duplication of properties such as manufacturer product number,
description or height/weight/etc. For validation, we define a constraint that any instance
of gr:SomeItems must have the same ROC climbing ontology class as defined for its
referenced product model. For example, it is not reasonable to define a product that is an
instance of roc:Rope, and then link it to a product model that is a type of roc:Harness.
Constraints are discussed further in Section 5.1.

Figure 7. Examples of Instances in a Climbing Retailer's Inventory

It may happen that the granularity of the Product Model Ontology is different than that of
the Retailer Inventory Ontology. For example, an instance of a product model may
include multiple color options (grouped under a single manufacturer product number or
UPC code). Unfortunately, how a manufacturer defines individual products is their
prerogative. To accommodate this variability, ROC adds a specific roc:color property to
distinguish inventory items. There is little more frustrating for a customer than to try to
purchase a red climbing harness, only to be told to wait for an associate to check the
actual stock, as the inventory system reports that there is one harness in either red, blue or
black. The roc:color property would be repeated in each inventory instance in order to
define the exact color(s) in stock.

Continuing the color discussion, a second constraint is defined that restricts the color of
an inventory item to one of the options from its product model. Where a single value of a
property is specified for a product model, such as weight, the property does not need to
be repeated in the inventory instances. In all cases, the necessary information can be
retrieved by writing SPARQL queries ("SPARQL 1.1 Query Language", 2013) using the
OPTIONAL keyword, where the property is optional in both the product model and
inventory instances.

So, once a customer is set to buy an item, or at least interested in buying something, the
next thing to determine is the price. GoodRelations and Schema address this via
instances of an gr:Offering / schema:Offer class, respectively. All instances of

Westerinen, Tauber

 13

gr:Offering are defined in their own namespace in ROC, and are logically peers of the
inventory instances.

It is recommended to use a separate namespace/ontology for offers/pricing, as these
change more frequently than the products that are stocked in inventory. The reason for
separating the namespaces is to more easily track changes to the instances and to use the
software design principles of loose coupling and strong cohesion. (In order to avoid
revealing any pricing/offer information specific to a retailer, the ROC inventory and offer
details in GitHub are fictional. They were created for illustration purposes only.)

Returning to pricing, an instance of gr:Offering uses the property gr:includes, with a
range of gr:SomeItems, to specify which product(s) are offered. Different products could
be bundled together by using multiple gr:includes properties, each referencing another
product.

By default, it is assumed that there is one instance of a product included in an offering. If
this is not a valid assumption, gr:Offering can define the exact quantities using the
gr:includesObject property, which references an instance of the class,
gr:TypeAndQuantityNode. gr:TypeAndQuantityNode exemplifies the use of reification in
ontologies to support n-ary relationships. It has the properties gr:typeOfGood (which
references a product or set of products in an inventory) and gr:amountOfThisGood
(which specifies the quantity).

The price of a product is defined by relating one or more gr:PriceSpecification instances
using the property, gr:hasPriceSpecification. The general superclass,
gr:PriceSpecification, provides details on the currency type and price as a specific value
or range, as well as details such as the transaction or volume amounts (for example, the
minimum transaction amount to qualify for free shipping). The semantics of "transaction
amount" references minimum amounts, while volumes can be specific values or ranges
(such as indicating that shipping costs are $5.00 USD for purchases in the range of $50-
$100 USD).

gr:PriceSpecification is defined as the superclass for three explicit subclasses. These are:
gr:DeliveryChargeSpecification, gr:PaymentChargeSpecification (for example, if there is
a surcharge for credit card transactions), and gr:UnitPriceSpecification. Combining a
per-unit offer with delivery charge information is accomplished using the schema:addOn
/ gr:addOn properties. (Schema adds a fourth subclass of gr:PriceSpecification,
schema:CompoundPriceSpecification, but that is not used in ROC.)

Interestingly, Schema allows the full expressivity (and complexity) of GoodRelations but
also allows this information to be specified as properties of the schema:Offer class. This
simplifies defining a basic offer. Table 1 compares a simple schema:Offer with the full
semantics available in Schema and GoodRelations.

Westerinen, Tauber

 14

	 Simplified	 Schema	 Schema	 GoodRelations	
Product	 itemOffered

references (an
instance of)
SomeProducts

includesObject
references (an
instance of)
TypeAndQuantityNode
which has a property,
typeOfGood which
references (an instance
of) SomeProducts

Includes references (an
instance of) SomeItems
OR
includesObject
references (an
instance of)
TypeAndQuantityNode,
which has a property,
typeOfGood which
references an instance of
SomeItems

Add-‐on	
offer	

addOn references
instances of other
Offers

addOn references
instances of other Offers

addOn references
instances of other Offers

Accepted	
payment	
methods	

acceptedPayment
Method references
one of the values of
PaymentMethod
(enum)

acceptedPaymentMethod
references one of the
values of
PaymentMethod (enum)

acceptedPayment
Methods references one
of the values of
PaymentMethod (enum)

Price	 price (numeric) and
priceCurrency
(string of ISO 4217
codes)

priceSpecification
references an instance of
PriceSpecification which
has properties, price or
min/max price, and
priceCurrency

hasPriceSpecification
references an instance of
PriceSpecification, which
has properties,
hasCurrencyValue or
hasMin/MaxCurrencyVal
ue (float), and
hasCurrency (ISO 4217
code)

Tax	 or	 VAT	
included	 in	
price	

valueAddedTax
Included (boolean)

valueAddedTaxIncluded
(boolean)

valueAddedTaxIncluded
(boolean)

Time	 period	
when	 the	
offer	 is	
valid	

priceValidUntil
(date)

priceSpecification
references an instance of
PriceSpecification which
has properties,
validFrom and
validThrough

hasPriceSpecification
references an instance of
PriceSpecification, which
has properties, validFrom
and validThrough

Min	
transaction	
amount	

eligibleTransaction
Volume references
an instance of
PriceSpecification

eligibleTransaction
Volume references an
instance of
PriceSpecification

eligibleTransaction
Volume references an
instance of
PriceSpecification

Westerinen, Tauber

 15

	 Simplified	 Schema	 Schema	 GoodRelations	
Volume	
amount	

eligibleQuantity
references an
instance of
QuantitativeValue
which has
properties, value or
min/maxValue and
unitCode
(UN/CEFACT
Common Codes)

eligibleQuantity
references an instance of
QuantitativeValue which
has properties, value or
min/maxValue and
unitCode (UN/CEFACT
Common Codes)

hasEligibleQuantity
references an instance of
QuantitativeValueInteger
which has properties,
hasValue or
hasMin/MaxValue and
hasUnitOfMeasurement

Table 1. Comparison of Product Offer Properties between Schema and GoodRelations

Lastly, a retailer with brick-and-mortar locations would want to document the store
locations, especially when searching for a store that has a particular item in stock. This
information is defined using the schema:hasPOS / gr:hasPOS 8property. The range of
the property is a schema:Place / gr:Location class with this additional detail:

• Address (schema:address, specifically a schema:PostalAddress and its
properties)

• Direct contact information (schema:telephone, schema:faxNumber)
• Open/closed hours and days of week (schema:openingHoursSpecification /

gr:hasOpeningHoursSpecification with its properties)

4.5. Personal Inventory of Purchased Items

A collection of gear purchased by a person or organization is defined similarly to a
Retailer Inventory, in that it contains instances of actual, physical products. The
collection is maintained by the retailer, and reflects the items purchased either online or
from a brick-and-mortar store. These items are instantiated as instances of gr:Individual /
schema:Product class.

gr:Individual instances in the collection are defined only once and will not include
properties such as gr:hasInventoryLevel or be part of gr:Offerings. Multiples of given
models are differentiated by incremental numbers in their URIs, as seen in Figure 8,
although any approach that assigns unique URIs is valid.

The collection shown in Figure 8 contains four Black Diamond camming units (used as
placed protection in rock, which will catch falls), two each of different cam sizes. In the
ROC ontologies, we adopted the convention of distinguishing instances by including the
size in the name ("Cam1" for a size 1 cam versus "CamPoint75" for a cam with a .75
size) and then suffixes that are incremented as items are added. Any naming convention

8 POS is an acronym for "points of sale".

Westerinen, Tauber

 16

can be used (including the use of arbitrary identifiers) as long as the resulting identifiers
are unique.

Figure 8. Examples of Instances in a Personal Inventory

For each individual, the date and time of purchase is captured using the roc:purchased
property. One use of this property is to notify the owner when the expected lifetime of
the product is reached.

Beyond the date of purchase, the condition of the gear could be captured using the
roc:hasCondition property. This is important if the retailer resells used equipment.
However, the retailer could also allow a user to maintain the condition of the equipment
in their personal inventory. A motivation for labeling products in poor or damaged
condition would be to receive notification when there are sales on replacement gear.

Another use for maintaining lists of purchased items is to notify customers in case of
safety issues or recalls.

4.6. Purchase Lists

In ROC, purchase lists are assumed to be generated in one of two ways. First, a customer
can create a list of items to purchase while shopping online or in-person at a brick-and-
mortar store. Second, a list can be automatically generated from a personal inventory
based on both age and gear condition, or based on upgrading items already in the
collection. The pre-generated lists could be supplemented and/or edited as a customer
decides what gear to purchase. An application using the ROC ontologies can also make
suggestions for other gear to buy based on items that are currently in the purchase list,
based on the retailer's sales history of gear that is commonly used together.

Westerinen, Tauber

 17

Regarding generating a purchase list based on a personal inventory, it would include any
items where the product's roc:condition is either roc:Poor or roc:Damaged. These are
items that should be replaced for safety reasons. An application using the ROC ontologies
could provide additional value by comparing the needed items with a retailer's inventory,
or search online for details on sales, and then return a purchase list. Given sales history,
the application might even recommend discounts for the customer. For a retailer, another
application could execute online searches to compare prices, or if the retailer is out of
stock, find other sellers with the gear or find alternate products from other manufacturers.

Unfortunately, when an inexperienced customer is creating a purchase list, they may
select incompatible gear. The ROC ontologies can be used to issue a warning in these
cases. The retailer can then ensure that the customer understands that some of the
selected items should not be used together. This demonstrates the power of inferring
incompatibilities, which improves customer satisfaction and reduces the need for staff to
be proficient in all aspects of the domain.

5. Constraint and Inference Processing Using ROC

Inference is enabled when concepts and individuals are defined in ontologies. In this
section, we discuss using the Stardog graph database ("Stardog", n.d.) and its integrity
constraint and reasoning functionality to address some of the application areas mentioned
above9.

5.1. Constraints Applicable to a Retailer's Inventory

Two types of constraints were discussed in Section 4.4 related to a retailer's inventory.
The first was to validate that the ROC climbing ontology class was the same for an
individual product in the inventory as was defined for its backing product model. The
second was that the individual product's color was one of the colors listed in its related
product model. The SPARQL declarations for both of these constraints are shown in
Figure 9 and Figure 10.

9 Inferencing rules in Stardog are defined using SPARQL and a Semantic Web Rule Language
(SWRL) ("SWRL: A Semantic Web Rule Language Combining OWL and RuleML", n.d.).
Constraints are a validation of instances modeled as OWL axioms (expressed in SPARQL), based
on a Closed World Assumption and a weak variant of the Unique Name Assumption (Perez-
Urbina, Sirin & Clark, n.d.).

Westerinen, Tauber

 18

Figure 9. ROC ClimbingGear Type Constraint

Figure 9 demonstrates how constraints can be defined in SPARQL and include complete
information on the error/warning10. The error/warning message is the value of the
?violation variable, where we also use the query variable names as substitution strings.
The English translation of the SPARQL constraint is:

• Find an instance that is defined as a gr:SomeItems and also get its ROC climbing
ontology class (the ?indClimbingGear variable, filtered by the namespace "roc")

• Follow the gr:hasMakeAndModel property to the backing product model and
retrieve its ROC climbing ontology class

• Only return instances where the ROC types of the individual and the backing
product do not match

 Figure 10 is a similar constraint which is interpreted as:

• Find an instance that is defined as a gr:SomeItems and also get its color (the
?color variable)

• Follow the gr:hasMakeAndModel property to the backing product model
• Only return instances where the product's colors do not include the individual's

color

10 At this time, we are only statically reporting errors in English, although it would be possible to
instead reference an instance of an ErrorMessage class (also defined in the ontology) with various
text properties that differ by language.

Westerinen, Tauber

 19

Figure 10. Product's Color Constraint (Restricted to Product Model's Colors)

In order to determine if there are constraint violations in Stardog, an application simply
loads the SPARL declarations into a database and then requests that the database be
validated.

Other constraints have also been defined:

• Beyond color, the other properties of an item in a retail or personal inventory
(such as size, usage, etc.) must be one of the values of the related product model

• Items in a personal inventory should have a condition
o A constraint for all gr:Individuals

• Retail inventory items should have an inventory level
o A constraint for all gr:SomeItems

• All individuals in a retail or personal inventory should have only one color
option, one size, one height, one width, …

o A constraint for all gr:Individuals and gr:SomeItems

By individually adding or removing constraints, a retailer or user can utilize the concepts
and individuals in ROC to meet their specific requirements.

5.2. Constraints Applicable to a Purchase List

One constraint was discussed in Section 4.6 related to a purchase list. It dealt with
alerting a customer that they were buying incompatible gear. One example is where a
static rope is purchased at the same time as a belay device. This could be a problem, as
static ropes are designed for raising or lowering loads, and for use with ascenders.
Dynamic ropes are designed to stretch and absorb the impact of a fall. A constraint that
alerts someone to the incompatibility is shown in Figure 11.

Westerinen, Tauber

 20

Figure 11. Product Incompatibility Constraint Example

This particular constraint is run with reasoning (inference) turned on in Stardog so that
we do not have to declare that an instance of roc:AutoBrakingDevice or
roc:TubularDevice is also a type of roc:BelayDevice. Because the ontology defines the
former as subclasses of roc:BelayDevice, running the query with reasoning will take the
hierarchy into account and correctly process all the instances. Without reasoning, we
would have to replace the check for ?individual2 being a type of roc:BelayDevice with a
union of checks for roc:AutoBrakingDevice and roc:TubularDevice.

5.3. Inferences Applicable to a Personal Inventory or Purchase List

ROC was designed to support various, specific inferences. One example is an automated
discount system. When there is overstock of an item, a retailer may want to expedite sales
and therefore discount the product. To support this, a rule similar to that shown in Figure
12 could be written. It would suggest updated prices to a retailer if the inventory level is
over a certain, predefined amount. If the suggested price is approved, an application
would automatically change the gr:PriceSpecification of a gr:Offering for the product.
The price in the inference in Figure 12 is a percentage discount that can be set by the
retailer and can vary between products. Once the product falls below the overstock level,
an application could again reset the price to its original. Another use of this sort of
automated system could be for reorder levels.

Figure 12. Rule to Infer Discounted Price Due to Overstock

Westerinen, Tauber

 21

The rule can be explained as:

• Find any individual with an inventory level greater than 10 items
o First, the instance of gr:QuantitativeValueFloat that is related as an

inventory level is retrieved (following the gr:hasInventoryLevel
property)

• Get the gr:QuantitativeValueFloat's specific value (following the gr:hasValue
property)

o The value must be converted to an integer, as gr:hasValue has a range of
literal

• Find any gr:Offerings that reference the individual and get their
gr:PriceSpecification

• Only retrieve gr:PriceSpecifications that are kinds of gr:UnitPriceSpecification
• For these specifications, get the price and currency

o There may be more than one gr:UnitPriceSpecification if the value is
specified in multiple currencies

• Define the new price and return it when querying for any
roc:hasSuggestedCurrencyValue recommendations

6. Future Work

Coupling schema.org and GoodRelations with a domain-specific ontology enables a
broad set of applications (some examples of these applications were discussed above).
ROC is our initial attempt to demonstrate this. At present, we are working with a local
climbing chain, related to modeling their gym locations, available inventory and product
and training offers. At the same time, we are mining some of the larger retailers' web
sites for similar product and price comparison data.

Another extension of ROC's concepts supports advice and product recommendations for
a retailer's customers. This advice would codify details such as is found on REI's web
pages, "Expert Advice" ("Climbing Articles & Tips", n.d.).

A third area of work improves ROC's suggestions for replacement, upgraded and
"consumed" gear in an individual collection. Several scenarios that combined both
customer and retailer benefits were mentioned in Section 4.6.

References

1. Climbing Articles & Tips. (n.d.). Learn at REI. Retrieved from
http://www.rei.com/learn/expert-advice/climbing.html

2. Denale, R., & Weidenhamer, D. (2016, November 17). U.S. Census Bureau
News, Quarterly Retail E-Commerce Sales, 3rd Quarter 2016. Retrieved from
http://www.census.gov/retail/mrts/www/data/pdf/ec_current.pdf.

3. FOAF (2000-2015+). (n.d.). The FOAF Project. Retrieved from http://www.foaf-
project.org/

Westerinen, Tauber

 22

4. Gruninger, M., & Obrst, L., et al. (2014). Ontology Summit 2014 Communiqué
Semantic Web and Big Data Meets Applied Ontology. Retrieved from
http://ontolog.cim3.net/file/work/OntologySummit2014/OntologySummit2014_C
ommunique/OntologySummit2014_Communique_v1-0-0_20140429-1045.pdf

5. Guha, R. V. (2012, November 08). Good Relations and Schema.org. Retrieved
from http://blog.schema.org/2012/11/good-relations-and-schemaorg.html

6. Guha, R. V., Brickley, D., & Macbeth, S. (2015, December 15). Schema.org:
Evolution of Structured Data on the Web. Databases, 13(9).

7. Hepp, M. (2011, October 01). GoodRelations Language Reference. Retrieved
from http://www.heppnetz.de/ontologies/goodrelations/v1.html

8. ItemCondition. (n.d.). schema.org. Retrieved October 12, 2016, from
http://schema.org/itemCondition

9. OWL 2. (2012, December 11). OWL – Semantic Web Standards. Retrieved from
http://www.w3.org/OWL/

10. Perez-Urbina, H., Sirin, E., & Clark, K. (n.d.). Validating RDF with OWL
Integrity Constraints. Retrieved from http://docs.stardog.com/icv/icv-
specification.html

11. Popular UN/CEFACT Common Codes for Units of Measurement. (n.d.).
GoodRelations Wiki. Retrieved December 10, 2016, from
http://wiki.goodrelations-
vocabulary.org/Documentation/UN/CEFACT_Common_Codes

12. Schema.org analysis 2014. (2014, April 22). Searchmetrics. Retrieved from
http://www.searchmetrics.com/news-and-events/schema-org-in-google-search-
results/

13. Schemas. (n.d.). schema.org. Retrieved October 12, 2016, from
http://schema.org/docs/schemas.html

14. SomeProducts. (n.d.). schema.org. Retrieved October 3, 2016, from
http://schema.org/someProducts

15. SPARQL 1.1 Query Language. (2013, March 21). W3C Recommendation.
Retrieved from http://www.w3.org/TR/sparql11-query/

16. Stardog. (n.d.). Stardog 4: The Manual. Retrieved from http://docs.stardog.com/
17. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. (2004,

May 21). W3C Member Submission. Retrieved from
http://www.w3.org/Submission/SWRL/

