
April	 2017	

	 	 1	

Ontology Development by
Domain Experts (Without

Using the "O" Word)

Andrea Westerinen, Rebecca Tauber
Nine Points Solutions, LLC

Abstract: Ontologies are created to describe and reason over the knowledge of a
domain of interest. This requires deep understanding of the domain, and
therefore, the input and collaboration of the domain's experts. But, the
individuals with the domain knowledge are rarely versed in model or ontology
development, and do not know the formal languages or logic that express
ontological concepts. What is needed is to create renderings of the ontologies
that fit how the experts work and make it easy for them to create, review and
evolve the domain concepts. This paper presents thoughts on how to bridge the
gap between ontology and domain experts, and how to create effective and
usable ontologies without ever using the "O" ("ontology") word. In addition, the
paper is intended to stimulate discussion on future directions for the techniques
and technologies described here.

Keywords: Ontology Review, Ontology Visualization, Spreadsheet Data

1. Introduction

Ontologies are rapidly growing in popularity for use in big and linked data applications to capture
the knowledge of a domain and integrate its data sets. The methods have already been adopted
across many domains, including planetary science at NASA. NASA's ontology defines the
semantics of planetary science data to aid in encoding the specific data of its programs and
integrating it with a big data processing system (Earley, 2016). As in many domains, an
interdisciplinary team developed NASA's ontology, first working with the scientists to understand
what knowledge should be captured. After the knowledge engineering and domain modeling were
complete, the ontology was developed through use of formal languages and tooling, such as
Protégé (http://protégé.stanford.edu).

It is unlikely that the NASA scientists would have developed the planetary science ontology on
their own (or would have had the time and desire to learn how to create it). For many non-
ontologists, the utility and development of ontologies is not entirely clear. Even the use of the
word, "ontology", conveys complexity and the need to learn new ways of expressing and
representing concepts. Description or common logic languages, modeling methodologies, and
ontology development tools, while highly useful, take time to comprehend and require experience
to use effectively.

Westerinen, Tauber

	 2	

The NASA scientists were fortunate to have a supporting team that included ontology experts.
But, even for ontology experts, an important step in ontology development is validation. Domain
experts need to ensure that the entities, the relationships between them, and all the definitions and
semantics are accurate. Asking a domain expert to use an ontology-authoring tool or to
understand the complexities of a description logic language (such as OWL) may result in errors
or omissions, or in the expert becoming frustrated and losing interest entirely.

The role and engineering of ontologies for the Big Data and Linked Data communities were two
of the basic problems addressed in the Ontology Summit 2014 Communiqué (Gruninger, Obrst et
al., 2014). However, in order to use ontologies, they must be understandable and accessible to the
members of the communities, and correctly reflect the necessary domain concepts. This requires
that the concepts and relationships in an ontology be presented in a way that is familiar to the
users and the experts.

The following paper reviews development efforts in this space. Related work is reviewed in
Section 2. We describe our work and experiences with a custom graphing tool (OntoGraph) and
supporting textual documentation in Section 3. Then, in Section 4, we discuss how the
OntoGraph and spreadsheet tooling has evolved, and areas of investigation for future
development. One of the goals in presenting this work is to stimulate discussion on the
requirements, technologies and techniques involved in working on ontologies with domain
experts.

2. Related Work

Although there are many ontology engineering methodologies and tools on the market, using
them typically requires a high degree of training and ontological expertise. This section provides
an overview of efforts targeted at users who are not ontology experts.

2.1. Developing Ontologies

Insight into ontology development and curation by domain experts can be seen in the success of
the Gene Ontology (GO, Bada et al., 2004, and "Gene Ontology", n.d.). Bada et al. attributed this
to the following characteristics:

• Community involvement – GO "originated from within the biological community rather
than being created and subsequently imposed by external knowledge engineers. Terms
were created by those who had expertise in the domain."

• Clear goals and limited scope – GO's goal was specific: "to provide a common
vocabulary for describing gene products, in terms of three … attributes [cellular
components, molecular function and biological process], for the primary purpose of
consistently annotating entries in biological databases".

• Simple structure – GO is defined using a directed acyclic graph where "each node in the
graph is a natural-language term with a … natural-language definition, while each edge is
either an is-a or part-of relationship". A separate graph is maintained for each of the three
attributes in GO's scope.

• Continuous evolution and active curation – GO was not meant to be complete, but is
evolving as the biomedical domain of knowledge is expanding and being revised.

Westerinen, Tauber

	 3	

The goals of community involvement by domain experts with simple, targeted concepts and
structure are discussed again in Section 3.

Beyond concepts and structure, choice of an ontology development methodology is extremely
important and will impact the entire scope of a project. Many methodologies have been proposed,
catalogued and extended over the years (Corcho, Fernandez-Lopez, & Gomez-Perez, 2003, and
Sure, Tempich & Vrandecic, 2006). One such methodology, UPON Lite (De Nicola & Missikoff,
2016), extends the Unified Process for Ontology building (UPON) and directly relates to the
problems described above. UPON is a cyclical ontology-building method that utilizes Unified
Process (UP) and the Unified Modeling Language ("UML", n.d.) for iterative, incremental, and
use-case driven development (De Nicola, Missikoff, & Navigli, 2005). Even so, UPON is still
dependent on ontology engineers and requires extensive knowledge of modeling techniques.
UPON Lite was developed to address the "growing need for simpler, easy-to-use methods for
ontology building and maintenance, conceived and designed for end users, … reducing the role of
(and dependence on) ontology engineers".

UPON Lite defines a six-step process to capture domain concepts as an ontology. Each step of the
process creates a "self-contained artifact readily available to end users", and able to be
enriched/extended by the next step. The process begins with the creation of a domain lexicon,
creating a list of the terms (concepts and properties) that are relevant in the domain. After the
terms are collected, natural-language descriptions are associated with each one. This is an
important step since it often occurs that different communities or business scenarios assign
different meanings to the same term. Understanding when this occurs and the underlying
semantic differences is very valuable.

The next steps in the UPON Lite process are to organize the nouns into a
generalization/specialization (IS-A) hierarchy, and to define the scope of the properties and
relationships. The latter step defines the domains and ranges of the properties, restricting them to
the specific concepts or atomic datatypes to which they apply. Concepts are also analyzed
regarding their structure and components to create a meronymic (whole-part) organization.
Finally, an ontologist expresses all the information gathered from the domain experts using a
formal language such as OWL.

The steps in the UPON Lite methodology are discussed in more detail in Section 4.

2.2. Visualizing Ontologies

There are various techniques to define ontologies in an unambiguous, computer-understandable
way. Here, we focus on the use of the Resource Description Framework ("RDF", 2014) and Web
Ontology Language ("OWL", 2012) due to the ubiquity of the OWL ecosystem for tooling and
development. This means that RDF and OWL visualization tools are of the most immediate
interest for collaborative work on ontologies.

There exist a wide variety of approaches for the visualization of OWL ontologies (Katifori,
Halatsis, Lepouras, Vassilakis & Giannopoulou, 2003, and Lanzenberger, Sampson & Rester,
2010). In their survey, Katifori et al. described six categories of visualization distinguishing
between whether the ontology is represented as an indented text list, a graph or a landscape with
interacting nodes, whether two or three dimensions are shown, and the user-interaction options
that are available (for example, having the ability to zoom or move focus to different nodes). For
basic visualization, the simplest approaches are the indented list, such as the class browser in

Westerinen, Tauber

	 4	

Protégé, and node-edge graphs. Katifori et al. also highlighted that all aspects of an ontology (i.e.,
its classes, inheritance hierarchies, instances, relationships and properties) should be visualized in
order to have a complete understanding of it.

One scheme for a 2D node-edge visualization of OWL ontologies is the Visual Notation for OWL
Ontologies ("VOWL", n.d.). VOWL was designed for "casual ontology users with only little
training" (Lohmann, Negru, Haag & Ertl, 2014). This makes it an attractive option for ontology
visualization for domain experts. VOWL and other graph representations such as UML are
discussed further in Section 3.

Also relevant in this space is a study comparing indented tree visualizations and graphs (Fu, Noy
& Storey, 2013). Fu et al. highlighted that multiple approaches present different viewpoints that
can complement each other and better engage users. In the same study, the authors found that
participants believed that graphs "held their attention better", and were better suited to obtain an
overview of a domain or to show multiple inheritance. Important factors in the usability of a
graph are its ability to be consumed in manageable fragments, and to be customized based on
personal preference or style.

2.3. Ontologies and Spreadsheets

Spreadsheets are another popular approach to representing ontologies; they are "familiar" tools
used in almost all domains. The author of one such tool, Populous (Stevens, 2012), stated that
spreadsheet use in the sciences (especially the life sciences) is "almost ubiquitous". Additionally,
the tooling that supports UPON Lite (discussed in Section 2.1) is based on a spreadsheet. De
Niccola and Missikof "experimented with shared Google Sheets [for UPON Lite] for ontology
engineering, plus Google Forms and Google+ for other functions (such as debating and voting on
contentious issues)". Their spreadsheets had specific columns that captured a term and its
synonyms, object or data type, description, etc.

There are many spreadsheet-based tools to aid in the development and use of ontologies. The
work described below lays a foundation for collaboration through use of spreadsheets, but is not
an exhaustive overview.
	
A simple approach to importing or exporting data to a spreadsheet is as a set of comma-separated
values (CSVs). TARQL ("TARQL", n.d.) is an open-source tool that converts data in CSV files
to a Resource Description File (RDF) format. Using TARQL, it is possible to create ontology
class, property and instance data. However, this is not a tool for domain experts, since the
conversion is defined using a SPARQL query.

A similar tool for comma- or tab-separated value conversion is ROBOT ("ROBOT", n.d.). While
ROBOT was developed for working with the Open Biomedical Ontologies
(http://www.obofoundry.org), it can be used with any OWL ontology. More than just
manipulating CSVs, ROBOT goes beyond TARQL to include development features such as
merging, subsetting, reasoning with, and comparison of ontologies (Overton, Dietze, Essaid,
Osumi-Sutherland & Mungall, 2015).

ROBOT uses a "template" string to define the meaning of each column in a spreadsheet. For
example, a column may be defined as holding an "ID" or "LABEL", or identify that the values in
the subsequent rows define specific property annotations (if the template string starts with an
"A") or class expressions (if it starts with a "C"). Template strings are specified in the second row

Westerinen, Tauber

	 5	

of a spreadsheet, while the first row defines a column name. Although ROBOT is quite versatile,
it still mandates a basic understanding of OWL, ontologies and the template syntax in order to use
it.

Tooling such as ROBOT is not unique in the biomedical field. Necessitated by the huge growth
of data, several tools have been created to aid in the curation and annotation of data by
biomedical domain experts. Structured vocabularies and ontologies are used to promote
consistency in definition and categorization, and to enable reuse (Howe et al., 2008).
Unfortunately, while there is some automation, much of the data curation and annotation has to
be done manually.

RightField ("RightField", n.d.) is an application targeted at improving data annotation by
removing the need for experts to understand the necessary vocabularies, ontologies or
mechanisms of metadata/annotation management. It provides a means to restrict the values of
specific cells, columns or rows of a spreadsheet to the classes or instances of an existing ontology
(Wolstencroft et al., 2011).

One problem, however, is that an ontology or vocabulary may not be complete and new terms
may need to be added. For this reason, Populous ("Populous", n.d.) was created as an extension of
RightField, allowing both the use and addition of terms to a vocabulary/ontology. Populous was
used in the development of the Kidney and Urinary Pathway Ontology (KUPO) (Jupp et al.,
2012).

Another interesting application of spreadsheets is Owlifer (Bowers, Madin, & Schildhauer, 2010).
This tool was created to allow the import and definition of ontology concepts, subclasses,
synonyms, properties and comments/descriptions using spreadsheet templates, and then to output
the information in OWL.

The tools discussed above demonstrate the value of spreadsheets in ontology development and
use, and there are many more (Kovalenko, Serral & Biffl, 2013). The key aspect in the use of
spreadsheets is that they require information be provided using a specific format or template. We
return to this discussion in Section 3, where we document one, specific spreadsheet format that
was used with several of our customers.

3. Visualization and Spreadsheet Tooling for Domain Experts

With the goal of presenting an ontology to a community of experts and based on the work
described in Section 2, we developed several tools to provide both visual and written information,
using formats with which experts were comfortable (graphs and spreadsheets). Both visual and
written outputs are generated, as studies have indicated the value in using multiple techniques
(Katifori et al, 2003, and Fu et al., 2013).

3.1. OntoGraph

For visualization, we created the OntoGraph program ("OntoGraph", 2016-2017). It was designed
to provide documentation on existing OWL ontologies, developed for our consulting customers.
OntoGraph is architected to create separate graphs for the classes, object and data properties, and
individuals of an ontology. Separate graphs are generated to reduce the number of nodes and

Westerinen, Tauber

	 6	

edges on any single graph, and thereby reduce crowding and help focus the semantics. It is also
possible to generate a single, UML-style1 class diagram.

The type of graph to be generated (class/inheritance information, a property diagram,
instance/enumeration details, or a UML-style class diagram) is specified using a "Graph Type"
selection (shown in the Figure 1 below). It is possible to select more than one type, in which
case, all the generated graphs are returned as individual files.

OntoGraph visualizations can take many different formats. The program supports "standard"
representations (such as Graffoo2, VOWL, and UML-style class diagrams) or a custom format.
By selecting a "custom" visualization, the graphical representation can be tailored. Node shape,
node color, property line color, and source and target property line arrow shapes can all be
defined. And, these can be varied for classes versus individuals, and object versus data
properties. The flexibility is intended to align the graph with business or industry conventions, or
to allow the output to be tailored to a user's specific needs or preferences. Figure 1 shows the
initial interface of OntoGraph, where the ontology file, visualization and other configuration
options are identified. Figure 2 shows the property-related, customizable features.

Figure 1. OntoGraph Interface for a Custom Visualization

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 The text, "UML-style class diagram", is used to indicate that a single diagram is generated which uses the
visual notations of UML.
2 http://www.essepuntato.it/graffoo/specification/current.html 2 http://www.essepuntato.it/graffoo/specification/current.html

Westerinen, Tauber

	 7	

Figure 2. Customization Options for Property Visualizations

Examples of two of the OntoGraph outputs are shown in the figures below. Figure 3 shows a
rendering of the Friend of a Friend ("FOAF (2000-2015+)", n.d.) class inheritance hierarchy. This
is a custom visualization of an "Inheritance" graph type. The "Inheritance" customization options
were modified to select a "rectangle" class node shape, with no source arrow and a "standard"
target arrow. Figure 4 shows the property graph for the same ontology. It was generated using
the "Collapse property edges" option (shown in Figure 1) and the "Property" customization
options shown in Figure 2.

Figure 3. Visualization of the FOAF Class Hierarchy

Westerinen, Tauber

	 8	

Figure 4. Visualization of the FOAF Properties

It is valuable to consider how complex Figure 4 would be, if the "Collapse property edges"
option was not chosen. Most visualization tools draw individual lines for each edge. When this is
done for an ontology such as Friend-Of-A-Friend, the result is as shown in Figure 5 – where
many of the property names are not readable. To address this without removing edges would
require a very large graph. Instead, OntoGraph allows the option of collapsing all the edges
connecting the same source and target to one line, where the text lists the label of each of the
individual lines.

Westerinen, Tauber

	 9	

Figure 5. Visualization of FOAF Properties without Reducing the Number of Edges

Figures 3, 4 and 5 were generated taking the output of OntoGraph and importing it into the yEd
graph editor ("yEd", n.d.). The class diagram, Figure 3, was generated using a directed tree
layout, with some minor manipulation of the generated layout. The property diagrams, Figures 4
and 5, were generated using a radial layout (again, with some manipulation of the generated
layout).

OntoGraph does not produce an automatic layout of the generated graph, since a user will
typically want to tweak, reposition and/or annotate the elements. For this reason, OntoGraph
simply creates a GraphML ("GraphML", n.d.) declaration of the rendering. This is then imported
into a graphical layout tool. Using the layout tool, a user can select any appropriate layout.
Separating functionality between OntoGraph and a layout/graph editing tool enables each
application to focus on its specific user requirements.

3.2. Spreadsheet Tooling

Beyond graphs, we also generate domain documentation for existing OWL ontologies using a
simple spreadsheet format. The spreadsheet consists of four pages (worksheets) describing the
concepts (classes) of a domain, their relationships (object properties), data properties and
instances. The layout of each of the worksheets is as follows:

• All Worksheet pages
o Columns are defined for the concept's/relationship's/property's or instance's name

and definition
o Also, a column with a comma-separated list of synonym names is provided

• Concepts (Classes) Worksheet
o A column is added for the definition of a comma-separated list of "more general"

concepts (supporting multiple inheritance)

Westerinen, Tauber

	 10	

• Relationships (Object Properties) Worksheet
o Relationships are assumed to be directed and columns are provided to reference a

comma-separated list of the source and target concepts (from the Concepts
Worksheet)

o Columns also indicate if the relationship is single-valued or transitive
• Properties (Data Properties) Worksheet

o Columns are provided to reference a comma-separated list of the concepts (from
the Concepts Worksheet) to which the property is applicable, and the type of data
(Boolean, integer, string, etc.)

o Columns also indicate if the relationship is single-valued
• Instance Worksheet

o A column is provided to reference a comma-separated list of concepts (from the
Concepts Worksheet) which define the type of the individual

o At this time, instances are treated as enumerated values – their relationships,
properties and their values cannot currently be defined

The spreadsheet is generated by loading an OWL ontology to an RDF database and then querying
the following fields3:

• rdf:type to distinguish between concepts, object and data properties and instances, to
determine the type of instances, to determine if a relationship is single-valued
(functional) or transitive, and to determine if a property is single-valued

• rdfs:subClassOf to define the inheritance hierarchy
• rdfs:label, SKOS ("SKOS", 2009) prefLabel or a custom property for the name
• SKOS definition, Dublin Core ("Dublin Core", n.d.) description, rdfs:comment or a

custom property for the definition
• owl:equivalentClass for conceptual "synonyms", SKOS altLabel or a custom property for

label synonyms
• owl:disjointWith for conceptual "antonyms"
• rdfs:domain to define the source concepts of a relationship or the concepts where a

property is applicable
• rdfs:range to define the target concepts of a relationship or the data type of a property

Figure 6 shows the query that generates the Concepts Worksheet CSV:

Figure 6. Query of FOAF Concepts

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3 The fields discussed in the bullets are the customary ones defined in OWL and several widely used
ontologies, but queries can be customized to use any convention.

Westerinen, Tauber

	 11	

Figure 7 shows the results from the query executed over the FOAF ontology, modified by the
OntoSheet program ("OntoSheet", 2016-2017), and imported into a spreadsheet program.
OntoSheet performed the following manipulations:

• Collapsed the information in all columns for any rows referencing the same subject, ?s
(since the query returns each combination of variables as an individual result)

• Replaced the query variable names in the first row with "friendly" identifiers (for
example, replacing ?subClassOf with "More General Concept")

• Simplified the URLs (using prefixes) for any references outside of the FOAF ontology

Column sizes were manually adjusted after import.

Figure 7. Worksheet of FOAF Classes

4. Conclusions and Future Work

Section 3 focused on tooling to document existing OWL ontologies and share their content
beyond ontology experts. The tooling is unique from that discussed in Section 2 in that it:

• Combines both visual and spreadsheet (textual) output, versus being focused only on
visualization or only using spreadsheet data

• Provides visual output that can be customized to business or industry conventions,
versus mandating a specific visualization format

• Simplifies visualizations by collapsing multiple edges between two nodes to a single
edge

• Is general purpose, versus targeted at a particular industry or domain
• Creates flexible spreadsheet outputs, versus restricting spreadsheet cells, columns or

rows using templates and hard-coded conventions
• Supports the current version of OWL (OWL 2)
• Is available and maintained as open-source (https://github.com/NinePts)

Westerinen, Tauber

	 12	

The tooling is released as open-source to encourage broader development and usage. Feedback,
bug reports, and information on improvements and new requirements are very important. The
remainder of the paper discusses current areas of work.

The OntoGraph and OntoSheet tooling assume that an appropriate, domain ontology exists and is
defined using an OWL syntax. We are extending the OntoSheet tooling to capture new concepts
and properties (and their related data) added to any of the worksheets, as well as any review
comments defined for existing concepts and properties. (Also important in this approach is to
capture the provenance of the additions and changes.) The intent is to follow the workflow
defined by UPON Lite, with the goals of:

• Defining and curating a set of nouns, relationships (verbs and objects), properties
(adjectives), and instances/enumerated values (proper nouns and restricted values) that
address a specific aspect or area of a domain

• Understanding how the nouns are connected in a taxonomy (generalization/specialization
hierarchy)

• Restricting the concepts/nouns to which the relationships and properties apply

The problem of crowded images is also being examined. Simply separating class, instance and
property diagrams and reducing the number of edges cannot address the full issue. If an ontology
is large, its visualization can be confusing and unreadable, too large to be viewed without
scrolling, or otherwise unreadable. We are working to define a straightforward mechanism to
select (limit) specific concepts to display on a single graph, and then list all the other concepts (to
indicate what is missing). Until this work is complete, OntoGraph is best suited for small,
modular ontologies and ontology design patterns.

Another area of investigation is to transform the graphical and spreadsheet output based on the
community of domain experts (their context and preferred vocabulary). Many ontologies utilize
unique IDs to identify entities, and displaying these on a graph is meaningless to domain experts
unless the text label is present. The goal is to display information to the experts using the
terminology with which they are most familiar, instead of asking them to think in terms of a
"standard" vocabulary. When there are overlapping or widely divergent semantics for a concept,
it is not always possible to get the experts to agree on a single phrase or term. If that obstacle is
removed, and the experts can agree on the semantics and preferred terminology, the path to
broader acceptance of ontology use will be cleared.

References

1. Bada, M., Stevens, R., Goble, C., Gil, Y., Ashburner, M., Blake, J., Cherry, M., Harris,
M., & Lewis, S. (2004, February). A Short Study on the Success of the Gene Ontology.
Web Semantics: Science, Services and Agents on the World Wide Web, Volume 1, Issue
2, pp. 235-240. Retrieved from
http://www.sciencedirect.com/science/article/pii/S1570826803000313

2. Bowers, S., Madin, J. , & Schildhauer, M. (2010). Owlifier: Creating OWL-DL
Ontologies from Simple Spreadsheet-Based Knowledge Descriptions. Ecological
Informatics 5(1), pp. 19-25. Retrieved from
http://www.cs.gonzaga.edu/~bowers/papers/ecoinf-2010.pdf

3. Corcho, O., Fernandez-Lopez, M., & Gomez-Perez, A. (2003). Methodologies, Tools and
Languages for Building Ontologies. Where is Their Meeting Point? Data & Knowledge
Engineering (46), pp. 41-64. Retrieved from http://oa.upm.es/2637/1/JCR02.pdf

Westerinen, Tauber

	 13	

4. De Nicola, A., & Missikoff, M. (March 2016). A Lightweight Methodology for Rapid
Ontology Engineering. Communications of the ACM, Volume 59, Issue 3, pp. 79-86.

5. De Nicola, A., Missikoff, M., & Navigli, R. (2005). A Proposal for a Unified Process for
Ontology Building: UPON. DEXA 2005, Lecture Notes in Computer Science, Volume
3588, pp. 655-644.

6. Dublin Core. (n.d.). DCMI Specifications. Retrieved from
http://www.dublincore.org/specifications/

7. Earley, S. (2016, January). Really, Really Big Data: NASA at the Forefront of Analytics.
IT Professional, Volume 18, Issue 1, pp 58-61.

8. FOAF (2000-2015+). (n.d.). The FOAF Project. Retrieved from http://www.foaf-
project.org/

9. Fu, B., Noy, N., & Storey, M. (2013, 12th International Semantic Web Conference).
Indented Tree or Graph? A Usability Study of Ontology Visualization Techniques in the
Context of Class Mapping Evaluation. Lecture Notes in Computer Science, Volume
8218. Retrieved from http://keg.cs.uvic.ca/pubs/fu-ISWC2013.pdf

10. Gene Ontology. (n.d.). Gene Ontology Consortium. Retrieved from
http://www.geneontology.org/

11. GraphML. (n.d.). The GraphML File Format. Retrieved from
http://graphml.graphdrawing.org/

12. Gruninger, M., & Obrst, L., et al. (2014). Ontology Summit 2014 Communiqué Semantic
Web and Big Data Meets Applied Ontology. Retrieved from
http://ontolog.cim3.net/file/work/OntologySummit2014/OntologySummit2014_Commun
ique/OntologySummit2014_Communique_v1-0-0_20140429-1045.pdf

13. Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide, W., Hill, D., Kania, R.,
Schaeffer, M., St Pierre, S., Twigger, S., White, O., & Rhee, S. Y. (2008, September 4).
Big data: The future of biocuration. Nature 455(7209), pp. 47-50.

14. Jupp, S., Horridge, M., Iannone, L., Klein, J., Owen, S., Schanstra, J., Stevens, R., &
Wolstencroft, K. (2012, January 25). Populous: a tool for building OWL ontologies from
templates. BMC Bioinformatics, Volume 13, Supplement 1. Retrieved from
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-S1-S5

15. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., & Giannopoulou, E. (2003)
Ontology Visualization Methods – A Survey. Retrieved from
http://oceanis.mm.di.uoa.gr/pened/papers/12-onto-vis-survey-final.pdf

16. Kovalenko, o., Serral, E., & Biffl, S. (2013, September). Towards Evaluation and
Comparison of Tools for Ontology Population from Spreadsheet Data. Proceedings of the
9th International Conference on Semantic Systems, pp. 57-64.

17. Lanzenberger, M., Sampson, J., & Rester, M. (2010, January 19). Ontology
Visualization: Tools and Techniques for Visual Representation of Semi-Structured Meta-
Data. Journal of Universal Computer Science, Volume 16, Number 7, pp. 1036-1054.
Retrieved from
http://pdfs.semanticscholar.org/dc94/73af090e61dd758b7728aa8cccc31874962e.pdf

18. Lohmann, S., Negru, S., Haag, F., & Ertl, T. (2014). VOWL 2: User-oriented
visualization of ontologies. In K. Janowicz, S. Schlobach, P. Lambrix, and E. Hyvönen,
editors, Knowledge Engineering and Knowledge Management, Volume 8876 of Lecture
Notes in Computer Science, pp. 266–281.

19. OntoGraph. 2016-2017. Retrieved April 7, 2017, from
http://www.ninepts.com/tools/ontograph/

20. OntoGraph. 2016-2017. Retrieved April 7, 2017, from
http://www.ninepts.com/tools/ontosheet/

21. OWL 2. (2012, December 11). OWL – Semantic Web Standards. Retrieved from

Westerinen, Tauber

	 14	

http://www.w3.org/OWL/
22. Overton, J., Dietze, H., Essaid, S., Osumi-Sutherland, D., & Mungall, C. (2015).

ROBOT: A command-line tool for ontology development. Retrieved from http://ceur-
ws.org/Vol-1515/demo6.pdf

23. Populous. (n.d.). Google Code Archive. Retrieved from
http://code.google.com/archive/p/owlpopulous/

24. RDF 1.1. (2014, February 25). RDF – Resource Description Framework. Retrieved from
http://www.w3.org/RDF/

25. RightField. (n.d.). RightField, Semantic Annotation by Stealth. Retrieved from
http://www.rightfield.org.uk/

26. ROBOT. (n.d.). GitHub – ontodev/robot. Retrieved from
http://github.com/ontodev/robot

27. SKOS. (2009, August 18). SKOS Simple	 Knowledge	 Organization	 System	 Namespace	
Document,	 W3C	 Recommendation.	 Retrieved	 from	
https://www.w3.org/2009/08/skos-‐reference/skos.html	

28. Stevens, R. (2012, November 13). Easing the pain of ontology building with Populous.
Retrieved from http://robertdavidstevens.wordpress.com/2012/11/13/easing-the-pain-of-
ontology-building-with-populous/

29. Sure, Y., Tempich, C., & Vrandecic, D. (2006). Ontology Engineering Methodologies in
Semantic Web Technologies: Trends and Research in Ontology-Based Systems.

30. UML. (n.d.). Welcome to UML Web Site! Retrieved from http://www.uml.org/index.htm
31. TARQL. (n.d.). TARQL: SPARQL for Tables. Retrieved from http://tarql.github.io/
32. VOWL. (n.d.). VOWL: Visual Notation for OWL Ontologies. Retrieved from

http://vowl.visualdataweb.org/
33. Wolstencroft, K., Owen, S., Horridge, M., Krebs, O., Mueller, W., Snoep, J., du Preez,

F., & Goble, C. (2011, May 26). RightField: Embedding Ontology Annotation in
Spreadsheets. Bioinformatics, 27(14), pp. 2021-2022. Retrieved from
http://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr312

34. yEd. (n.d.). yEd – Graph Editor. Retrieved from http://www.yworks.com/products/yed

